
www.allitebooks.com

http://www.allitebooks.org

Oracle WebLogic Server 12c:
First Look

A sneak peek at Oracle's newly launched WebLogic
12c, guiding you through new features and techniques

Michel Schildmeijer

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle WebLogic Server 12c: First Look

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2012

Production Reference: 1150612

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-718-8

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Michel Schildmeijer

Reviewers
Vivek Acharya

Wickes Potgieter

Acquisition Editor
Rukshana Khambatta

Lead Technical Editor
Unnati Shah

Technical Editor
Manasi Poonthottam

Project Coordinator
Joel Goveya

Proofreader
Stephen Swaney

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'Silva

Manu Joseph

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Michel Schildmeijer, was born in the Netherlands, in the hot summer of 1966.
He has lived his entire life in the capital, Amsterdam. After mid-school, he started
studying pharmacy. After four years, he had to fulfill his military duty, at the Royal
Dutch Air force, working in a pharmacy.

After this period, he got a job as a Quality Inspector at a Pharmacy Company, but
after about two years, he switched his job for a position in a hospital's Pharmacy,
where he worked for over 10 years.

In the meantime, he got married to Tamara and got two boys, Marciano and Robin.
His personal life wasn't always that easy, because his wife got extremely ill for some
period, so he had to take all responsibilities for managing his family. Fortunately, he
got intensive support from his parents-in-law, who helped greatly in taking care of
his kids.

During his Pharmacy job, around 1994, he got acquainted with the Medical
Information System which was taking care of structuring patient medical history
and information. This was a system running on HP UNIX, a MUMPS SQL database
and text-based terminals. He started learning UNIX and MUMPS to give operational
support. By then he became enthusiastic, so he switched jobs and started working
for some IT companies. Around 2000, he started using Oracle on a big banking
application for settlements and clearance. The system was running on Oracle 7 and
AIX UNIX and BEA WebLogic and BEA Tuxedo. This was the first time he worked
with WebLogic. From then on, he got more and more specialized in Middleware and
Oracle. He worked on many projects. Around 2006, he started working on several
projects for IBM, in the Oracle Middleware team, administering, configuring, and
tweaking large Oracle Middleware systems with Oracle SOA Suite, Oracle Portal,
Oracle HTTP, and many more.

In 2008 he began working for Randstad Holding, and got more and more specialized
in developing the middleware infrastructure around applications. He started an
investigation about migrating the Oracle Application Server 10g and SOA Suite 10g
to the 11g platform. Around that period, Oracle acquired BEA.

www.allitebooks.com

http://www.allitebooks.org

From working in Brussels for Belgacom, a big Telco company in Belgium, he started
his current job, Oracle Fusion Middleware Architect, for AMIS, an IT Company
specialized in Oracle and Java.

His focus was always at developing the infrastructure for many companies, advising
them how to migrate or build a new middleware platform based on the latest 11g
techniques. He also became an instructor, teaching all the basics of Oracle WebLogic.

The reason for him to write this book is to get familiar with the new features in
WebLogic 12c, and because he thinks it's a great product with a lot of new features,
especially the new Java EE 6 features and Exalogic optimizations.

Michel is now working for Qualogy as a member of the Exalogic Squad Team.

Qualogy is an international organization delivering both standard and custom
Oracle and Java solutions and services.

Qualogy uses first-rate applications and works with solid partners and highly-
qualified consultants who are more than willing to offer their know-how to further
improve your organization. This results in customized automation that ensures the
business processes within your organization will run more efficiently and simpler
than ever before.

Qualogy offers optimum support during the whole automation process: from advice,
development, and testing to implementation and monitoring.

He specializes in Oracle, Java/JEE, Consultancy, Oracle eBusiness Suite, Exalogic,
Web2.0, and QAFE.

I would like to thank some people who helped me in completing
this book:

 My wife Tamara, whose life is a difficult struggle sometimes

 Janny and Steef, who took care of my kids

 Marciano and Robin, my great kids

 All the reviewers

 And those who supported me in an unusual way

www.allitebooks.com

http://www.allitebooks.org

Michel Schildmeijer is an Oracle Fusion Middleware Architect at Qualogy.

Oracle Platinum Partner Qualogy has in-depth expertise in delivering Oracle-based
technologies and services, including advanced technologies such as Oracle Fusion
Applications, Oracle Fusion Middleware, and Oracle Exalogic Elastic Cloud. Qualogy
was founded in The Netherlands in 1998. Today the company is home to over 150
specialists in the field of Java and Oracle Development, Oracle E-Business Suite,
Fusion Middleware, Oracle Exalogic, Database Administration, Business Intelligence,
Agile Consultancy, SOA, Big Data, Cloud and Web development with Enterprise
Application Platform QAFE (http://www.qafe.com). We provide tailor-made
applications and a wealth of expertise for integrating, streamlining, and providing
insight into complex business processes.

Qualogy is ISO 9001 certified, showing customers that processes have been
documented in a system of quality, and that the company can quickly track,
correct, and prevent possible errors.

Additionally, Qualogy is NEN 4400 certified, Certified Oracle Solution Partner, W3C
member, Google Apps Authorized Reseller, and Top ICT Employer for a couple of
years in a row.

For more information, please visit www.qualogy.com.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Vivek Acharya is an Oracle Consultant working as a professional freelancer.
He has been in the design, development, consulting, and architect world for
approximately seven years working in Oracle Practice at GE, IBM, and HP. He is
an Oracle Certified Expert as Oracle Fusion-SOA 11g Implementation Specialist
and Oracle - BPM 11g Implementation Specialist. He has experience and expertise
in Oracle Fusion—SOA, BPM, BAM, Mediator, B2B, BI, AIA, Web logic, workflow,
Rules, WebCenter, ECM, IDM, Oracle fusion applications, SaaS, On Demand, and so
on. He loves all things to do with Oracle Fusion Applications, Oracle SOA, Oracle
BPM, Cloud Computing, Sales force, SaaS, and BSM.

He has been the author of a couple of books on distributed systems, Oracle BPM,
and so on, and keeps an interest in playing synthesizer and loves travelling. You can
add him at http://www.linkedin.com/pub/vivek-acharya/15/377/26a, write
to him at vivek.oraclesoa@gmail.com, and read him at http://acharyavivek.
wordpress.com/.

www.allitebooks.com

http://www.allitebooks.org

Wickes Potgieter has worked as a product specialist for over 12 years. His
main focus was on the BEA WebLogic suite of products and after the Oracle
acquisition of BEA Systems, he focused on the Oracle Fusion Middleware suite of
products. His experience ranges from solution architecture, infrastructure design,
administration, development, pre-sales, and training to performance tuning of the
Oracle Fusion Middleware products, JVM, and custom applications. He specializes
in Oracle WebLogic Server, JRockit, Service Bus, SOA, BPM, BAM, Enterprise
Manager 11g/12c, WebCenter, Identity and Access Management, and Application
Performance Management.

They have formed a specialized consulting company in 2003 with offices in the
United Kingdom and South Africa, covering customers in the EMEA region. They
are an Oracle Gold partner and have a team of specialized Oracle Fusion Middleware
consultants servicing customers both onsite and offsite.

TSI-Systems website: www.tsisystems.co.uk and Wickes can be contacted at
wickes@tsisystems.co.uk.

I would like to thank my wife, Mary Jane, for her patience and
assisting me through all the late nights. Thank you to all my friends
and family for constant encouragement.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Ready for the Cloud! 7

The c is replacing the g 7
WebLogic 12c supports over more than 200 new features! 8
Overview and structure in the new features 8

Java EE 6 support and development 8
Java EE 6 features 8
Development features 9

Configuration and tooling 11
Performance and failover 11
Traffic management 12
Enterprise Manager 12c 12
Distributed caching 13

Some more Exalogic features 14
Summary 15

Chapter 2: Supporting the Java EE 6 17
Java EE 6 applications for conventional and cloud deployment 17
Major Java EE 6 API changes 18
Java EE 6 specifications 19

Contexts and Dependency Injection for Java EE (JSR 299) 19
Java Server Faces (JSF) 2 21
Enterprise Java Beans 3.1 22

Admin console support for EJBs in a WAR 26
EJB 3.1 annotation support 26
Simplified deployment with annotation support 26

Bean Validation 1.0 (JSR 303) 28
Java Persistence API (JPA) 2 28
Servlets 3.0 31
Java API for RESTful Web Services (JSR 311) 32

Table of Contents

[ii]

Java EE Connector Architecture 1.6 33
Deprecated APIs 33

WebLogic 12c shared libraries and modules 34
Java classes compatibility 35

Summary 36
Chapter 3: Deployment, Installation, and Configuration Features 37

Develop, build, compile, and deploy on WebLogic 12c 37
Lightweight development with WebLogic 12c 38
Some hints and tips using development on WebLogic 12c 39

Using FastSwap 39
Using the wlx option 40
Using WebLogic server tooling 40
Standard Java IDE support 41
Eclipse and Oracle Enterprise Pack for Eclipse (12.1.1.0) 41
NetBeans IDE 7.1 43
Other expected IDEs 44

WebLogic 12c and Maven integration 44
The project object model (POM) 45
Advanced features of WebLogic Maven plugin 48
Maven support for several IDEs 49
Maven for Eclipse/OEPE 49
NetBeans and Maven 50

Classloading and the Classloading Analysis Tool (CAT) 51
Overview of Java EE application Classpath 51
Built-in WLS CAT (ClassLoading Analysis Tool) 52

Deployment descriptor support for GlassFish Server 54
Cloud development with WebLogic 12c 55

Installation and upgrades with WebLogic 12c	 55
Upgrading to WebLogic 12c 57
New configuration features in WebLogic 12c 58

JDK 7 certification 58
Administration Console 58
NodeManager 58
JDBC 58
Security 59
Standalone clients 60
Deprecated: weblogic.management.username and weblogic.management.password 60

Web Services 60
Exalogic features 61

WebLogic 12c New feature TLog Store 62
Summary 62

Table of Contents

[iii]

Chapter 4: Integrated and External Services 63
JDBC services 63

Active GridLink and RAC integration 63
Fan enabling 64
New JDBC features for WebLogic 12c 65

JMS Services 69
Security services 70

Java Authentication Service Provider Interface for Containers (JASPIC)
support 70
RSA JSSE Provider 72
SSL Implementation 72

Changes to SSLMBean 73
JSSE/SSL 73
TLS 1.2 support 73

Better support for Single Sign-On with Microsoft Clients 74
Web Services 75

WebLogic Web Services with Java EE 6 75
WebLogic 12c and Jersey JAX-RS RI
Version 1.9 76
Support for EclipseLink MOXy (JAXB) 77

Summary 78
Chapter 5: Integration and Management with Enterprise
Manager 12c Cloud Control 79

What is Oracle Enterprise Manager 12c? 79
Oracle Enterprise Manager 12c system design 80

WebLogic Server Management: New in Enterprise Manager 12c 81
Configuration management features 82

WebLogic Server 12c provisioning and cloning 82
Automating discovery and detecting configuration changes 85

WebLogic Server 12c monitoring 86
Performance monitoring and diagnostics of WebLogic Server 86

Customizable performance summaries 88
Out-of-box metrics 88
Metric Extensions 89
Composite Application dashboard 90
Request Monitoring 90
JVM Diagnostics 91
Middleware Diagnostics Advisor 93
Diagnostic Snapshots 94
Monitoring for deployed applications 95

Table of Contents

[iv]

Application components dependency and performance 96
Log Viewer 97
Event monitoring 98

Business Transaction Management 98
Heap Analysis 99
Integrated Cloud Stack Management 99
Summary 99

Chapter 6: Oracle WebLogic 12c to the Cloud: Exalogic 101
What is Oracle Exalogic? 102

Exabus 104
Oracle Exalogic Cloud Software components 104
Exalogic Cloud Software 105

RDMA API: Oracle Tuxedo 106
Message Bus API: Oracle Coherence 108
SDP API: WebLogic 109

Oracle Virtual Assembly Builder 110
Oracle Traffic Director 111
Oracle WebLogic/Exalogic optimizations 114

Increased server scalability, throughput, and responsiveness 114
Better Oracle RAC and Exadata integration 115
Reduced Exalogic to Exadata response times 116

Summary 117
Index 119

Preface
Oracle WebLogic 12c is Oracle's number one strategic Application Server—able
to run on both cloud computing systems and conventional ones. Oracle WebLogic
12c implements the new Java EE 6 standard and supports Java SE 7, and this book
will guide you through all the new features, enhancements, and tools inside the
new 12c release.

Oracle WebLogic Server 12c: First Look offers a focused look at the new Weblogic
features with real-world examples.

This practical guide gives clear explanations and dives deep into all the definitions
and concepts of WebLogic 12c.

This book starts with a short introduction to WebLogic 12c. It then swiftly covers
the new features of Java EE and SE where we will also learn to develop Java EE 6
applications. This book also covers the new configuration and deployment features.
Finally, all the new cloud features and techniques will be highlighted, including
integration with Enterprise Manager 12c.

What this book covers
Chapter 1, Ready for the Cloud!, gives you an overall introduction to the new WebLogic
12c and its new features. All the topics discussed later in this book will be introduced
in here so you will know what to expect later on.

Chapter 2, Supporting the Java EE 6, covers some of the new features of Java EE 6
and SE and which features are used in WebLogic 12c and how they fit in into this
new 12c release.

Preface

[2]

Chapter 3, Deployment, Installation, and Configuration Features, discusses other major
or minor improvements that will appear, like different types of installations, domain
configurations, new deployment plugins, and strategies like the Maven plugin, and
also explains Oracle Virtual Assembly Builder.

Chapter 4, Integrated and External Services, covers new integrated services such as
Coherence, JDBC, JMS, and all kinds of new or enhanced security services in 12c. It
also discusses Active GridLink for JDBC, Partioned Distributed Destinations for JMS,
and many others which will give you a good overview of all kinds of new, enhanced,
or deprecated services.

Chapter 5, Integration and Management with Enterprise Manager 12c Cloud Control,
discusses the role of Enterprise Manager 12c Cloud Control and what it can deliver
for Middleware Administrators about monitoring and configuring your WebLogic
Server environment.

Chapter 6, Oracle WebLogic 12c to the Cloud: Exalogic, discusses the role of WebLogic
Server 12c in Oracle's Engineered system, Exalogic, and topics about the hardware
and software components in an Exalogic box.

What you need for this book
The following is the list of what you need for this book:

•	 WebLogic Server 12c(12.1.1) for Linux or Windows, or the generic
JAR version

•	 A JDK like JRockit or HotSpot
•	 Oracle Enterprise Eclipse Server pack 11g
•	 NetBeans 7.1.1
•	 Enterprise Manager 12c

Who this book is for
If you are a WebLogic Server administrator or developer excited about the new
features introduced in the 12c version, then this is the guide for you. A working
knowledge of previous WebLogic versions is preferable.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "boot.properties should be created
manually when running in the Production mode and should be placed in the
Domain directory in the security folder of the Admin Server".

A block of code is set as follows:

<path id="wlappc.classpath">
 <fileset dir="${wl.home}/server/lib">
 <include name="*.jar"/>
 </fileset>
</path>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 <fileset dir="${wl.home}/server/lib">
 <include name="*.jar"/>
 </fileset>

Any command-line input or output is written as follows:

java weblogic.appc -verbose -keepgenerated .

[JspcInvoker]Checking web app for compliance.

[jspc] Overriding descriptor option 'keepgenerated' with value specified
on command-line 'true'

[jspc] -webapp specified, searching . for JSPs

[jspc] Compiling /index.jsp

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "There's a
new section here, Transaction Log Store".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Ready for the Cloud!
Anyone who follows the Middleware world, and especially the application server
market, should have noticed the change on December 1, 2011.

This date was chosen by Oracle to announce the launch of its next generation of
Fusion Middleware products, using 12 as the major release number.

One of the first products to be released for the version-12 family along with
the launch of the Enterprise Manager 12c—the Java Enterprise Application
Server—forms the foundation of Oracle's Fusion Middleware product Oracle
WebLogic Server 12c!

Oracle WebLogic Server is already known as Oracle's strategic number one
application server for JAVA Enterprise Applications, and is the first which
will be at the 12c release. Later on in 2012, other products from the Oracle family,
such as the Oracle SOA Suite, will follow.

The c is replacing the g
As you can see, Oracle replaced the g in the release with c. It all had to do with
where Oracle put their focus. The g stood for grid computing which Oracle
introduced starting from release 10. Oracle's grid computing product group includes
(among other things) a database management system (DBMS) and an application
server. In addition to supporting grid computing features such as resource sharing
and automatic load balancing, 10g products automate many database management
tasks. The Real Application Cluster (RAC) component makes it possible to install
a database over multiple servers. Oracle has done a lot of effort to get ready for
cloud computing, the c appears in the main release.

Oracle also aligned their internal release numbers, where as in 11g it was a bit
confusing, for example, Oracle WebLogic 11g R1 PS 4 stood for version 10.3.5,
now internal release-number is 12.1.1

Ready for the Cloud!

[8]

WebLogic 12c supports over more than
200 new features!
Those who had followed the launch of the new Oracle WebLogic 12c on December
1, 2011, should have seen all commercial and marketing one-liners that they've
launched in the diverse presentations, demos, and webcasts. One of them was:

Of course, discussing all those 200 new features would make this book a 1000 pages
thick, but the headlines will be handled in this book and we will zoom in on some
really important features.

Overview and structure in the new features
To bring some structure in all the new features, we will divide them in categories
from which you will get a clearer view, and address the new features in a
broader perspective.

Java EE 6 support and development
The new Oracle WebLogic 12c implements the Java EE 6 standards, which supports
all kinds of Java EE 6 specifications implemented such as Java EE 6 features and
development features:

Java EE 6 features
The new features and specifications are listed as follows:

•	 JSF 2.0
•	 Java Servlets 3.0
•	 JPA 2.0
•	 EJB 3.1
•	 JAX-RS
•	 Managed Beans 1.0
•	 Support for Java SE 7 (and Java SE 6) which includes:

	° Java language optimizations and internationalization
	° Client and server support
	° SSL/TLS 1.2 in JSSE to support JAVA socket transport security
	° JVM Converge

Chapter 1

[9]

Not typically a specification, but important though: the convergence of the Java VM;
JRockit and HotSpot, are both incorporated with the best features from both Java
virtual machines. The JVM convergence will be a multiyear process. Probably it
will be a converged JVM-based on HotSpot with all goodness of JRockit.

The following are the JRockit features and specifications:

•	 Robustness
	° Cooperative thread suspension
	° More robust JIT compiler
	° White box testing APIs
	° Refactored codebase for maintainability

•	 Serviceability
	° JRockit Flight Recorder
	° HPROF heap dump support
	° Enhanced JMX agent
	° Native memory tracking
	° Fine granular compiler directives

•	 Performance

	° Up to 64 GB compressed references (was 4 GB)
	° Up to 30 percent lower GC pause times overall

The following are the features of HotSpot JVM:

•	 Oracle apps and middleware on Solaris
•	 Client and non-Oracle apps on Solaris/Windows/Linux

We will discuss JVM Converge in detail in Chapter 2, Supporting
the JAVA EE 6. We will also highlight some of the important
new JAVA EE 6 specifications.

Development features
WebLogic 12c has support for many IDEs. WebLogic already supports JDeveloper
11.1.1.5, but will come out with 11.1.1.6 later on. However, anyone developing
applications using WLS 11.1.1.5 can deploy them to WLS 12c.

Ready for the Cloud!

[10]

Also supported are Eclipse and NetBeans 7.1 IDE. As said, the JDeveloper 11.1.1.6
and IntelliJIdea IDE will be supported in a later timeframe. The following is the
screenshot of the IDEs already supported by WebLogic 12c:

The following screenshot shows the IDEs that will be supported later in 2012.
Unfortunately, during the writing process of this book, JDeveloper 12 was
not available.

The following are the other features:

•	 New enhanced WebLogic Maven plugin.
•	 Lightweight development with WebLogic server. The ZIP distribution

file does not contain any installers and can be used to configure a domain
when unzipped.

•	 Built-in GlassFish descriptor recognition for easy re-deployment to Oracle
WebLogic Server. GlassFish Server supports the weblogic-application.
xml, weblogic.xml, and weblogic-webservices.xml deployment
descriptor files.

Chapter 1

[11]

Configuration and tooling
There are many new features and tooling in the new WebLogic 12c. They are
as follows:

•	 WebLogic 12c provides upgrades from iAS with automated tooling
WebLogic 11g

•	 GlassFish redeployment with a built-in GlassFish descriptor recognition
for re-deployment to WebLogic server

•	 JBoss and WebSphere with migration services
•	 WebLogic 12c has Active GridLink—This is an optimization for RAC

Databases. GridLink uses Fast Connection Failover for faster RAC
failure detection.

Performance and failover
As WebLogic 12c is part of the Cloud foundation, it will run on conventional
systems, and also on utilized hardware or better called engineered systems
or Exalogic. To meet the requirements of these new hardware techniques,
WebLogic 12c has better performance features.

Some of these features are:

•	 Higher Performance accomplished with different kinds of techniques such as
the following:

	° Parallel muxers with Java NIO APIs for low-level I/O-based
operations

	° An optimized work scheduler providing improvements to the
Increment Advisor used to manage the size of WebLogic Server's
self-tuning thread pool

	° Lazy de-serialization of session data on the replica server
until required

	° Multiple replication channels for synchronous in-memory session
replication between servers in a WebLogic cluster

	° Enhanced high availability and disaster recovery

Ready for the Cloud!

[12]

Traffic management
WebLogic 12c supports Oracle Traffic Director. Oracle Traffic Director is a layer-7
software load balancer. Oracle Traffic Director:

•	 Is a load balancer
•	 Is a local traffic manager
•	 Uses the application network layer 7
•	 Can act as a reverse proxy
•	 Supports SSL 3.0 and TLS 1.0. You can configure SSL/TLS-enabled

HTTP listeners
•	 Will be the replacement for Oracle Web Cache
•	 Is not a built-in feature of WebLogic 12c
•	 Supports Integrated traffic management such as routing, load balancing,

request-routing and caching, and SSL crypto acceleration

Enterprise Manager 12c
Tight integration with the Enterprise Manager 12 Cloud Control and the use of the
Middleware. Within the Enterprise Manager one can administer, clone, perform
deployment, and provision tasks. Enterprise Manager 12c will be discussed in
Chapter 5, Integration and Management with Enterprise Manager 12c Cloud Control.

Some of the other features are as follows:

•	 Navigate the middleware routing topology
•	 Customize middleware performance summaries
•	 End-to-end performance management
•	 Use the middleware diagnostics advisor to size the JDBC connection pool
•	 Diagnose WebLogic performance bottlenecks
•	 Capture diagnostics snapshots
•	 Clone an Oracle WebLogic domain from the software library
•	 Deploy a Java EE application
•	 Manage SOA suite
•	 Manage Coherence

Chapter 1

[13]

The following screenshot shows you a typical middleware diagnostics page:

Managing Oracle WebLogic Server with EM 12c provides you a broad end-to-end
monitoring and management perspective from the external face of applications, to the
majority of the business logic. This means multiple clusters of managed servers that
handle both presentation and business logic and communicate with each other via
RMI, Web Services, and other remote invocations in order to complete transactions
for frontend processes. In order to properly manage these WebLogic servers (whether
there are multiple large-scale deployments or just a couple of clusters), administrators
need to keep track of performance, service levels, configurations, error/exception
handling, patching, and general application life cycle activities such as scale out and
WebLogic domain or Java EE application provisioning.

Distributed caching
The use of Coherence already exists, but was always a bit of a side product, from
WebLogic 12 there will be a tighter integration with the latest Coherence as follows:

•	 ActiveCache integration for JPA used in WebLogic server. This allows JPA
Entity caching and the TopLink grid enables you to direct queries to the
Coherence Active Cache.

•	 Coherence clusters have their own MBeans within WLS, which means more
integration of Coherence into the WebLogic server

Ready for the Cloud!

[14]

Another integration is the one with the node manager, which is used for starting/
stopping cache servers remotely and from the console. Exalogic and Cloud ready!

Oracle WebLogic is an Enterprise Application Server part of the Application Cloud
Foundation. Oracle Cloud Application Foundation combines technologies together:
Oracle Exalogic Elastic Cloud, the basis for the cloud world, Oracle WebLogic Server
for Java EE, Oracle Tuxedo for C/C++/COBOL, Oracle Coherence in-memory data
grid, Oracle JRockit and Hotspot Java SE solutions, Oracle Enterprise Manager,
Oracle Virtual Assembly Builder, and Oracle Traffic Director.

In the following diagram, you can see where WebLogic is positioned in
this foundation:

Oracle
Applications

3rd Party
Applications

Custom
Applications

Mainframe
Applications

Cloud
Applications

WebLogic ServerCoherence Tuxedo

Cloud Application Foundation

Some more Exalogic features
The following are some Exalogic features:

•	 The Virtual Assembly Builder: Deploys, un-deploys scale assemblies with
Oracle Virtual Assembly, quickly create and configure entire multitier
application topologies. With OVA, there is a new model for deployment,
patching, versioning, and management.

Chapter 1

[15]

•	 Exabus: High-speed network virtualization. Exabus has the following
components:

	° Coherence 3.7 for Java applications
	° Tuxedo 12c for C++ applications
	° Infiniband network interface

Both are using direct memory access and kernel bypass for better throughput
and lower latency.

•	 Enterprise Manager 12c Cloud Control, which we have seen earlier in
this chapter.

More Exalogic features will be discussed in Chapter 6, Oracle WebLogic 12c to the
Cloud – Exalogic.

Summary
The new Oracle WebLogic 12c has done a massive transformation with some of the
most important features such as Java EE 6 and Exalogic readiness. Oracle has made
a huge step into the future launching their number one Application Server to the
next level, and I think you will agree when I say that this is heaven on earth for an
IT technician.

In the next chapters, we will do a deep dive into the various features, with
sometimes a side-step to some to WebLogic related products.

www.allitebooks.com

http://www.allitebooks.org

Supporting the Java EE 6
One of the most exciting new features in the new Oracle WebLogic 12c is that it
supports the Java EE 6 specifications.

In this chapter, we will have a look at the new Java EE 6, but more in particular how
they fit in into Oracle WebLogic 12c and the Application Cloud Foundation. Also,
we will have a look at how this fits in applications working on the Exalogic platform,
along with WebLogic 12c.

The main thought or strategy of Oracle for WebLogic 12c is to, as they say,
develop modern, lightweight Java EE 6 applications. So let's see if Oracle
has accomplished this strategy with the new WebLogic 12c.

Java EE 6 applications for conventional
and cloud deployment
As said, Oracle has put in great efforts to make WebLogic 12c cloud-ready. However,
that does not mean conventional systems will be left behind. It could be the case that
a company decides not to have a cloud, either private or public.

Some goals for the Java EE 6 platform are as follows:

•	 Being flexible and lightweight: Providing some lightweight interfaces such as
JAX-RPC, EJB 2.x Entity Beans, JAXR, JSR 88

•	 Extensible: To be more open and flexible, it embraces open source frameworks
•	 Easier to use and develop on: Already this path was set on Java EE 5 and

continued in Java EE 6

Supporting the Java EE 6

[18]

Major Java EE 6 API changes
Every Java EE 6 API has been changed, enhanced, or some minor updates have taken
place. The focus of this version was put on WebTier. For this purpose there is a Web
2.0 profile with some of the interfaces to make it able to use the lightweight features.
The use of profiles with specific subsets of Java EE APIs are intended for specific
types of applications.

Each profile is fully integrated and just works out of the box, although integrating
add-ons is still possible. With profiles one can create modular, lightweight Java EE
compliant application servers a lot easier. In this release, there's only one profile, the
Web Profile (except from the full profile where you get all the APIs that belong to
the full profile.)

The following table shows you which API's are in the Web Profile:

API Web Profile
Servlet 3 √
JSF 2 √
CDI √
EJB 3.1 √
JPA 2 √
Bean validation √
JTA √

The major changes the new Java EE 6 has are:

•	 Contexts and Dependency Injection (CDI): Since the introduction of
Java EE 6, CDI is the next generation dependency injection.

•	 Java Server Faces (JSF) 2: JSF 2 is more flexible, is easy to use and has adopted
various new technologies and new features.

•	 Enterprise Java Beans (EJB) 3.1: Ease of use, some new features are added.
EJB Lite is a lightweight version with local interfaces, session beans
(stateful, stateless and singleton), and no timers or scheduling included.

•	 Java Persistence API (JPA) 2: More flexibility and new features.
•	 Servlet 3: Easier to use, new features that are focused on lightweight web

profile. Also, some more security enhancements and asynchronous support.
•	 Java API for RESTful Web Services (JAX-RS 1.1): REST-based web services

in addition to SOAP support in JAX-WS.

Chapter 2

[19]

•	 Bean validation: Validating data in JavaBeans can be done better by
expressing application constraints declaratively.

•	 Java Connection Architecture 1.6 (JCA): Ease of development by using
metadata annotations and no need to use ra.xml anymore, better security,
and integration for EIS applications.

•	 Java Authorization Contract for Containers 1.4(JACC): Some updates like
the use of annotations for propagating security policies.

•	 JAXB 2.2: To bind an XML schema to Java and the other way around was
updated too.

In the following sections, some of the new features will be highlighted.

Java EE 6 specifications
As mentioned earlier, Oracle WebLogic 12c supports Java EE 6, which supports a lot
of new features. Some of these features are discussed here.

Contexts and Dependency Injection for Java
EE (JSR 299)
This specification is a generic dependency injection with automatic context
management. It's an integral part of Java EE 6 and provides an architecture that
allows Java EE components such as servlets, enterprise beans, and JavaBeans to
exist within the lifecycle of an application with well-defined scopes. In addition,
CDI services allow Java EE components such as EJB session beans and JSF-managed
beans to be injected and to interact by firing and observing events. When you specify
this option, it generates beans.xml in the WEB-INF folder of your application. The
beans.xml file is used by CDI to instruct the Oracle WebLogic Server that the
project is a module containing CDI beans.

When the application is deployed, it knows there is a beans.xml file, so the classes
on the path are scanned for CDI annotations.

You now can create a ManagedBean and add a stateless annotation for a simple EJB.

In the following example you can see how the inject class is being used:

package demo;

import javax.inject.Named;

@Named

Supporting the Java EE 6

[20]

public class MessageServerBean {

 public String getMessage() {
 return "Hello World!";
 }
}

And with this, you can add MessageServerBean in a facelet as follows:

<h:body>
 Hello from Packt

 Message is: #{messageServerBean.message}

 Message Server Bean is: #{messageServerBean}
</h:body>

Another example being used within the WebLogic Server is the Resource Adapters
Bean discovery. This discovery detects if a Resource Archive (RAR) is a bean archive.
WebLogic will then treat all JAR files inside the RAR as bean archives, and even
overrules the META-INF/beans.xml files in this case. The bean archive descriptor
indicates that a specific RAR is a bean archive.

Some components that support CDI within RARs are as follows:

•	 ResourceAdapter bean—RAclass that uses the javax.resource.spi.
ResourceAdapter interface, with operations for life cycle management
and message endpoint setup

•	 ManagedConnectionFactory bean—The JavaBean class that uses the javax.
resource.spi.ManagedConnectionFactory interface and is a factory of
both ManagedConnection and EIS-specific connection factory instances

•	 ActivationSpec bean—The JavaBean class that uses the javax.resource.
spi.ActivationSpec interface contains the activation config info for a
message endpoint

•	 Admin objects—Set of classes that represents objects specific to a messaging
style or message provider

The following steps explain how an injection does its work for a resource adapter
like the DBAdapter:

1. It initializes the RA component bean configuration properties from
deployment descriptors.

2. Then the PostConstruct annotation after dependency injection is done to
perform any initialization.

Chapter 2

[21]

3. Performs bean validation and invokes the validate() method.
4. For an RA bean, invokes the start() method.
5. Makes all resource adapter component beans available either by binding

them to JNDI or exposing them to endpoint applications.

Java Server Faces (JSF) 2
As you all Java developers probably know, JavaServer Faces is a web-based
framework in the presentation layer that provides a subset of components for
graphical user interface, which binds user interface components according
to an event-driven model to objects.

JSF is a standard user interface (UI) framework for developing Java EE web
applications. It contains a default set of UI components, custom tag libraries for
adding UI components to a view, a server-side event model, and managed beans
(state management).

JSF 2 is already supported from WebLogic 10.3.3. In a typical WebLogic Server
installation, you will find the supported JAR files under the WLS Server Home,
in the directory common/deployable-libraries/jsf-2.0.war.

The JSF 2.0 shared library follows the same model as the previous JSF libraries
shipped with WLS, where it needs to be deployed and referenced using a library
ref; in a WLS deployment descriptor by applications that wish to use it.

The JSF 2.0 library supports Dependency Injection of Java EE resources and the
use of the Java EE 5 lifecycle annotations in managed beans as described in the
specification. This is done through the inclusion of a WLS-specific class that
implements the com.sun.faces.spi.InjectionProvider interface provided in
the WEB-INF/lib/wls.jsf.di.jar library within the jsf-2.0.war shared library.

Some new features in JSF 2 are:

•	 Enables JSF views in XML: In this feature, the JSP document file can be
treated as facelet file

•	 Pluggable Facelet Cache mechanism: In JSF 2.1.2, the in-memory cache
of the Facelet instance is served from a cache that is overridden with
an implementation in this API

•	 System events
•	 Enhanced navigation
•	 GET support
•	 Bean validation

Supporting the Java EE 6

[22]

•	 Proper error handling
•	 Project stages
•	 First class JavaScript and Ajax support
•	 Component behaviors
•	 Resource handling
•	 Delta state saving
•	 Tree visiting
•	 Annotation-based configuration
•	 Content Dependency Injection support

Beware, when using JSF 2.1 in your WebLogic Server, it requires at least a
Servlet 3.0 container.

The JSF implementation has been added directly to the WebLogic Server classpath.
This is a change from the WebLogic Server 11g release. In this change, the JSF
implementation was provided as an optional shared library, which needed to be
deployed in order for the applications to use JSF. With WebLogic Server 12c, JSF is
now an integral part of the server and can be used without the necessity of deploying
and referencing the shared library.

Even with the new JSF 2, WebLogic 12c supports the older JSF 1.2 and JSTL 1.1
packages. They are bundled with WebLogic Server as shared libraries, though they
are deprecated in this release. Existing web applications that use JSF 1.2 and JSTL
1.1 functionality can run on WebLogic Server. Choose the appropriate JSF or JSTL
library based on your application.

In this release, the weblogic.xml file in jsf-1.2.war configures a filtering class
loader for your application's JSF classes and resources. Do not forget to make a
library reference in weblogic.xml in your application.

Enterprise Java Beans 3.1
EJBs are managed beans with additional services like transactions. They provide
distributable and deployable business services to clients

The purpose of EJB 3.1 along with its JSR 318 specification was to simplify the
development and implementation of EJB. This simplification will hit two key areas:
development and packaging. This goal matches exactly with the new Java EE 6
because of these features, ease of development, ease of use, and lightweighted.

Chapter 2

[23]

•	 Singleton beans with concurrency control: Singleton sessions have the
ability to share application session state between multiple instances of
an EJB. A singleton bean bounds a session bean once per application in a
particular JVM, for the life cycle of the application. It can be useful to employ
a scheme in which a single shared instance is used for all clients. And new to
the EJB 3.1 Specification is the singleton session bean to fit this requirement.
The following diagram explains how clients can use the singleton bean to
share the state of a counter service. A stateless singleton bean can be called
from a Java client, with the count being consistently incremented.

Client 1

Client 2

PROXY

EJB

Singleton

Instance

PROXY

•	 Cron-style declarative and programmatic Timers: When you have some
knowledge of UNIX or Linux, you probably know the meaning of cron.
It's a scheduler from which you can schedule an action at any time and
as often as you wish.
Already in 3.0 there was a timer scheduler, this is enhanced in 3.1.
The most important one in this set of enhancements is the ability to
declaratively create cron-like schedules to trigger EJB methods.
The following is an example of such a scheduler:
@Stateless
public class ReleaseDateCounterBean implements ReleaseDateCounter{
@Schedule(second="0", minute="0", hour="0", dayOfMonth="1",
month="*", year="*")
public void generateMonthlyNewsLetter() {
... Still .. days to go before this book is published...
}
}

Look at the typical cron-style here:
@Schedule(expression="0 0 0 1 * * *")

Supporting the Java EE 6

[24]

•	 Simplified WAR packaging: Now another interesting feature is that you can
package your EJB as part of WAR. EJBs can be directly dropped into the WEB-
INF/classes directory and deployed as part of the WAR. In a similar vein,
the ejb-jar.xml deployment descriptor, if you happen to be using one, can
be placed into the WEB-INF directory along with the web.xml file. It may also
be possible to place an EJB JAR into the WEB-INF/lib directory.
The following diagram shows the simplified packaging schedule:

EAR WAR

WEB-INF classes EJB

JSP 1 web.xml

JSP 2 ejb-jar.xml

EJB

•	 Portable global JNDI names: For standardizing access to EJB applications,
portal global JNDI has been introduced.
EJB components can be registered and looked up from using the
following pattern:
java:global[/<app-name>]/<module-name>/<bean-name>

This can be important when EJBs are accessed locally but are deployed in
a WebLogic cluster. The JNDI can be accessed from every cluster member
using the standardized global application's name. A client running in the
same Managed Server Instance as a bean instance uses the same API to access
the bean as a client running in a different Managed Server Instance on the
same or different machine.

•	 Startup/shutdown callbacks: Singleton beans also provide a way for EJBs to
receive callbacks during application initialization or shutdown. By default,
the container decides when to instantiate the singleton instance. However,
you can force the container to instantiate the singleton instance during
application initialization by using the @Startup annotation. This gives the
bean permission to define a @PostConstruct method to be called at startup
time. At last, any @PreDestroy method for a singleton is guaranteed to be
called when the application is shutting down.

Chapter 2

[25]

In a WebLogic cluster, you can create the singleton service. And also specify
your application's class.

•	 EJB Lite—a standard lightweight subset of the EJB API: EJB Lite is, in fact, as
the name suggests, EJB with some disabled features as much as possible. On
one hand, this allows for very simple, lightweight implementations. On the
other hand, this means learning EJB Lite could consist of leaning just a small
handful of annotations and almost no configuration. The next generation of
lightweight Java EE application servers will probably implement EJB Lite
instead of the entire EJB 3.1 specification.
The following is the current list of features supported for EJB Lite:

	° Stateless, stateful, and singleton session beans
	° Only local EJB interfaces or no interfaces
	° Interceptors
	° Declarative security
	° Declarative and programmatic transactions

•	 Embeddable EJB: An API for executing EJB components within Java SE.

The following options are also included in the EJB 3.1 specification:
	° Embedded Containers/Testing support
	° Calendar-based timer expressions
	° Asynchronous bean invocation

Next we will discuss some of the additional options in WebLogic 12c.

www.allitebooks.com

http://www.allitebooks.org

Supporting the Java EE 6

[26]

Admin console support for EJBs in a WAR
As you can see in the following screenshot, WAR and EJB are combined into one
module instead of a separate one. In this case, it's easier to administer the application
because everything is in one place now.

EJB 3.1 annotation support
The annotated bean is, in fact, the control center of your EJB. It contains the Java code
about how your EJB behaves. It is a Java class file that takes care of implementing the
business logic and methods of your EJB. You are able to annotate this bean file with
metadata from the JDK to make a specification of shape and characteristics of the
EJB, and define services as enhanced business-level security or special business logic
during runtime.

Simplified deployment with annotation support
EJB 3.1 provides a dramatically simpler deployment with support for deployment
inside a WAR file. A class with a component-defining annotation becomes an
enterprise bean component when packaged within WEB-INF/classes or as .jar
in WEB-INF/lib. Enterprise beans may also be defined using a WEB-INF/ejb-jar.
xml file. Beans packaged in .war share a single namespace, and become part of
the WAR's environment. Packaging a JAR in WEB-INF/lib is thus semantically
equivalent to putting the classes in WEB-INF/classes.

To provide a simple compile, build, and deploy, you could make use of the
weblogic.appc class. This is not a new feature, but I want to mention this tool
because you can use it to be able to quickly and easily build and compile your
EAR files.

The appc tool offers you the flexibility of compiling an entire application, instead
of compiling segments. WebLogic Server has access to all modules during the EAR
compilation. If an error occurs while running appc from the command line, appc
exits with an error message. By running appc prior to deployment, you potentially
reduce the number of times a bean is compiled.

Chapter 2

[27]

After setting the right environment variables on your WebLogic Server, using
setDomainEnv or setWLSEnv you can run the following command:

java weblogic.appc [options]

Else create an ant task to use it in ant.

ant task weblogic.ant.taskdefs.j2ee.Appc

<project basedir="." default="appc" name="appc">
 <property environment="env"/>

 <property name="wl.home" value="/app/wlserver_12.1"/>
 <property name="application.dir" value="/home/weblogic/workspace/
wls12c/testWeb/WebContent" />

 <echo message="${wl.home}/server/lib"/>

 <path id="wlappc.classpath">
 <fileset dir="${wl.home}/server/lib">
 <include name="*.jar"/>
 </fileset>
 </path>

 <echo message="${toString:wlappc.classpath}"/>

 <taskdef name="wlappc" classpathref="wlappc.classpath"
classname="weblogic.ant.taskdefs.j2ee.Appc"/>

 <target name="appc">
 <wlappc source="${application.dir}"
 keepgenerated="true"
 verbose="true"/>
 </target>
</project>

Now you can run the appc tool from the command line.

java weblogic.appc -verbose -keepgenerated .

[JspcInvoker]Checking web app for compliance.

[jspc] Overriding descriptor option 'keepgenerated' with value specified
on command-line 'true'

[jspc] -webapp specified, searching . for JSPs

[jspc] Compiling /index.jsp

<Jan 29 4, 2012 4:38:03 PM CET> <Info> <J2EE> <BEA-160220> <Compilation
completed successfully>

Supporting the Java EE 6

[28]

Bean Validation 1.0 (JSR 303)
Working along with other Java specifications such as Context Dependency Injector or
Java Persistence API is Bean Validation.

Although it came out under Java EE 6, it does not need Java EE 6 to function.

Bean Validation defines a metadata model and API for the JavaBean validation. The
metadata source is annotations, with the ability to override and extend the metadata
through the use of XML validation descriptors.

Within managed beans in JSF applications, WebLogic Server does support the use of
dependency injection,. The simplest way to get it to work is to use the documented
mechanism of deploying. WebLogic Server supplies the JSF shared library, with
the specific implementation of the com.sun.faces.spi.InjectionProvider.
The InjectionProvider implementation is automatically configured on the
web container.

The new EE managed beans specification defines a base component model
for Java EE, together with a very basic set of container services (@Resource,
@PostConstruct, @PreDestroy).

The idea is that other specifications (beginning with EJB, CDI, JSF, and the new
Java Interceptors spec) build upon this base-component model and layer additional
services, for example, transaction management, type-safe dependency injection,
interceptors. So at this level, the managed beans, CDI, interceptors, and EJB
specifications all work hand-in-hand and are highly complementary.

Now, the managed beans specification is quite open-ended with respect to
identifying exactly which classes are managed beans. It does provide the
@ManagedBean annotation as one mechanism, but it also allows other
specifications to define different mechanisms.

Java Persistence API (JPA) 2
The framework for managing relational data in applications is, as you might know,
called Java Persistence API or better JPA.

The following features can be expected within JPA 2.0:

•	 Improved Object/Relational mapping
•	 Type-safe criteria API
•	 Expanded and richer JPQL
•	 second-level cache

Chapter 2

[29]

•	 New locking modes:
	° PESSIMISTIC_READ—grabs shared lock
	° PESSIMISTIC_WRITE—grabs exclusive lock
	° PESSIMISTIC_FORCE_INCREMENT—updates version

•	 Standard configuration options
•	 Even the JDBC driver has a JPA interface. You can use this option in your

JDBC connection specifications:
javax.persistence.jdbc.[driver | url | user | password]

See the following example:
<property name="javax.persistence.jdbc.url" value="jdbc:oracle://
localhost:3306/test2" />
<property name="javax.persistence.jdbc.driver" value="oracle.jdbc.
OracleDriver" />
<property name="javax.persistence.jdbc.user" value="test" />
<property name="javax.persistence.jdbc.password" value="test />

Some of the Java EE 6 specification are already supported in WebLogic 11g. JPA 2.0 is
one of them. Though version 1.0 was the default 2.0 also worked.

Unless an explicit <provider>...</provider> is specified in the persistence.
xml file of a deployed application, WebLogic 11g uses OpenJPA/Kodo by default.
The default JPA provider setting is exposed via a new MBean: JPAMBean on the
DomainMBean, and persists the configuration into the config.xml file.

Furthermore, you needed to install the patch QWG8 - Enable JPA 2.0 support on
WebLogic Server.

To make it work on 11g, you had to use Oracle TopLink as the persistency provider
as shown in the following screenshot:

Supporting the Java EE 6

[30]

Also specify the provider in the <provider> element for a persistence unit in the
persistence.xml file, for example:

<persistence-unit name="example">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</
provider>
...
 </persistence-unit>

Now for WebLogic 12c, of course, JPA 2.0 is the default.

A very interesting feature to use is WebLogic Server with TopLink Grid, using JPA
with Coherence as Level 2 Cache.

The following diagram explains how JPA works in an application:

Step 1

Application Logic

Create/Modify

Entities

JPA

Read Entities

Insert/Update/Delete

Entities

Step 2

Application Logic

JPA

Step 3

Application Logic

JPA

In this traditional way, no caching has taken place. With the use of JPA with
coherence (for more details about Coherence, refer to Chapter 6, Oracle WebLogic 12c to
the Cloud: Exalogic) you introduce a robust and high performing caching mechanism.

The use of a shared cache (L2) cache can improve application throughput.

TopLink Grid combines the simplicity of application development using the Java
standard Java Persistence API (JPA).

EclipseLink JPA applications are using Coherence as a shared (L2) cache replacement
along with configuration for more advanced usage. L2 caching is a sort of CPU
caching of multicore processors, and this technique is being used by Coherence.

Chapter 2

[31]

This following diagram shows you a basic example of JPA using caching mechanism:

TX n

Application Logic

JPA

Read Entities

TXn + 1

Application Logic

TX Commit Entitites

Servlets 3.0
Java servlets, are components that execute on the server, accepting client requests
and generating dynamic responses, and building dynamic content for web-based
applications unlike some previous releases of the specification, which were just
maintenance releases. The Servlet 3.0 specification is packed with lots of exciting
features required for the new era of web development. The new specification focuses
on delivering the following new features:

•	 Ease of development
•	 Pluggability and extensibility
•	 Asynchronous support with Asynchronous Servlets@

WebServlet(asyncSupported=true)

•	 Security enhancements
•	 Other miscellaneous changes
•	 @WebServlet, @WebListener, @WebFilter
•	 Plugin libraries using web fragments
•	 Dynamic registration of Servlets
•	 WEB-INF/lib/[*.jar]/META-INF/resources accessible in the root
•	 Programmatic authentication login/logout
•	 Default error page

Supporting the Java EE 6

[32]

It is quite evident that servlets have enjoyed much wider use than any other
technology in the Java Enterprise Edition family. The beauty of servlets remains in
their simplicity and ability to process HTTP requests and pass the response back
to web clients. Servlets can be used for implementing business logic of simple and
small applications. In the case of web frameworks, servlets serve as an entry point
(a controller servlet) for all incoming requests. Consequently, all popular frameworks
are built on top of raw servlets. The new features in Servlet 3.0 are aimed at easing
the development of servlet applications and will benefit both servlet developers
and framework developers. In the following sections, let us look into each of these
features in detail and see how we can utilize them for developing better applications.

Java API for RESTful Web Services (JSR 311)
RESTful Web Services, as you all might know do not need any additional messaging
layer to transfer its data over an interface like HTTP, other than SOAP. It has a built-
in set of rules from which you can create stateless services, to be viewed as resources.
They can be identified by a unique URI.

Some of the changes that are made in Java EE 6 are:

•	 Web services through REST instead of SOAP
•	 REST counterpart of JAX-WS
•	 Gets rid of low-level code so you can focus on core logic
•	 Annotations from the ground-up
•	 Integrated with CDI and EJB

Other than 11g, 12c supports RESTful Web Service Development on WebLogic
Server. It supports Jersey 1.9 JAX-RS Reference Implementation (RI), which is a
production quality implementation of the JSR-311 JAX-RS 1.1 specification.

JAX-RS can also be integrated with EJB Technology and CDI:

@Stateless
@Path("/webservices")
public class PacktPublisherBean {
@PersistenceContext
private EntityManager entityManager;
@PUT
@Path("/packt/{publisher}")
public void packtPublisher(
@PathParam("publisher")
String publisher,

Chapter 2

[33]

@QueryParam("book")
String book,
@QueryParam("title")
Double bookPrice) {
entityManager.persist(
new Bid(publisher, book, bookPrice));
}
}

Java EE Connector Architecture 1.6
As known, JCA contains resource adapters which are software components that
allow Java EE application components to access and interact with the underlying
resource manager of the EIS.

WebLogic Server supports several ease-of-development and ease-of-configuration
features introduced in the Java EE Connector Architecture version 1.6, including
the following:

•	 Metadata annotations—use the annotations in resource adapter class files.
Annotations can specify deployment information, eliminating the need to
create the ra.xml deployment descriptor file manually.

•	 Dynamic configuration properties that can be defined on ResourceAdapter,
ManagedConnectionFactory, and Admin Object beans.

•	 The ability to specify, at runtime, the transaction support a resource adapter
can provide

Deprecated APIs
The following interfaces are no longer supported in Java EE 6 and are deprecated:

•	 JAX-RPC: This interface was previously superseded by JAX-WS, although
still used in Java EE 5

•	 EJB 2.x Entity Beans CMP: Dropped in as an offer for JPA
•	 JAXR: UDDI not well used
•	 Java EE Application Deployment (JSR-88): Development specification

provided poor support

Supporting the Java EE 6

[34]

WebLogic 12c shared libraries and
modules
In the previous sections of this chapter, we discussed the new Java EE 6, but how do
we get it to work under our new WebLogic 12c Server?

In WebLogic Server 12c, you can make use of the shared Java EE library feature in
WebLogic Server which provides an easy way to share one or more different types of
modules among multiple enterprise applications. A shared library is a single module
or collection of modules that is registered with the Java EE application container
upon deployment. A shared library could be:

•	 Standalone EJB module
•	 Standalone web application module
•	 Multiple EJB modules packaged in an enterprise application
•	 Multiple web application modules packaged in an enterprise application
•	 Single plain JAR file

You should package a shared library into your built and compiled archive file
(EAR, JAR, or WAR). However, you may also choose to deploy shared as
exploded archive directories to facilitate repeated updates and redeployments
(for development purposes).

After the library has been registered, you can deploy applications which refer to
the library. Each referencing application receives a reference to the required library
on deployment, and can use the modules that make up the library as if they were
packaged as part of the referencing application itself. The library classes are added
to the classpath of the referencing application, and the referencing application's
deployment descriptors are merged (in memory) with those of the modules that
make up the shared Java EE library.

There are some things to keep in mind while using shared libraries. If you develop
shared Java EE libraries and optional packages, follow these rules:

•	 You should use shared libraries to share them amongst one or more Java EE
modules (EJBs, web applications, enterprise applications, or Java classes)
with multiple applications.

•	 If you need to deploy a standalone Java EE module, such as an EJB JAR
file, as a shared Java EE library, package the module within an enterprise
application. This avoids potential URI conflicts, because the library URI
of a standalone module is derived from the deployment name.

Chapter 2

[35]

•	 Optional packages are used when multiple Java EE archive files need to share
a set of Java classes.

•	 If you have a set of classes that must be available to applications in an
entire domain which do not need to be updated very frequently, then use
the domain /lib subdirectory instead of using the shared Java EE libraries
or optional packages. Classes in the /lib subdirectory are made available
(within a separate system-level classloader) to all Java EE applications
running on WebLogic Server.

•	 Always use versioning, even if you do not intend to enforce version
requirements with dependent applications. Specifying versions for shared
libraries enables to deploy multiple versions of the shared files for testing.

•	 It is better to specify an Extension-Name value for each particular shared
library. If you don't, one will be taken from the deployment name of the
library. Default deployment names are different for archive and exploded
archive deployments, and they can be set to arbitrary values in the
deployment command.

•	 For web applications, always use a unique context root when you develop it
as a shared Java EE library. If the context root conflicts with the context root
in a dependent Java EE application, use the context-root element in the
EAR's weblogic-application.xml deployment descriptor to override the
library's context root.

•	 For your deployers and admins, create a package of the shared libraries,
package them into an archive file and deploy libraries from exploded
archive directories during development to allow for easy updates and
repeated redeployments.

•	 Deploy and target shared Java EE libraries to all WebLogic Server instances
on which you want to deploy dependent applications and archives,
otherwise the application fails.

Java classes compatibility
One of the nice things about the new WebLogic 12c is that you don't have to
recompile or rebuild its previous application classes or libraries.

With one exception, upgrading to WebLogic Server 12c Release 1 (12.1.1) does not
require you to recompile applications in order to create new generated classes.

www.allitebooks.com

http://www.allitebooks.org

Supporting the Java EE 6

[36]

The only exception here is the EJBGen utility. The current version of the EJBGen
utility recognizes only JDK 5.0 or later metadata annotation-style EJBGen tags and
not the old Javadoc-style tags. This means that source files that use the Javadoc-style
tags must be upgraded to use the equivalent annotation, and then recompiled using
the updated version of EJBGen.

So how does Java EE 6 fit in to Cloud Technology?

The WebLogic 12c has been utilized for Oracle technical solutions for the cloud,
Engineered Systems or better called Exalogic. Applications running in the cloud
with the Java EE S6 specifications have:

•	 Tighter requirements for resource and state management
•	 Better isolation between applications for controlling lifecycling in the Java

Virtual Machine
•	 Standard APIs for NoSQL Databases, Caching, and so on
•	 Support for HTML5
•	 Common management and monitoring interfaces
•	 Better packaging

Summary
This chapter was focused on the new Java EE 6 and how it interacts with the new
Oracle WebLogic 12c. Of course, this chapter or even this book is too short to discuss
them all, but it will give you a good view about how it's implemented in a typical
Java EE application, which of course Oracle WebLogic 12c is.

Some key facts about Java EE 6 to remember are:

•	 Designed for the full or lightweight Web 2.0 profile
•	 Innovation: New APIs, new features, further ease-of-use with managed

beans, CDI, JSF 2, EJB 3.1, JPA 2, Servlet 3, JAX-RS, and bean validation
•	 The goal is to deprecate APIs that are outdated

With focus on the Cloud, it offers:

•	 Containers
•	 Injectable services
•	 Scale to large clusters
•	 Security model

In the next chapter, we will see how these applications will land in WebLogic Server.

Deployment, Installation, and
Configuration Features

Once we have looked at WebLogic 12c and how it fits into the Java EE 6 techniques,
let's have a closer look at how we can deploy, build, integrate, and configure our
applications into the new WebLogic 12c.

Besides getting it certified for JAVA EE 6, Oracle has done a great job making it
ready for the Cloud, Oracle's own engineered systems or Public Cloud.

Nevertheless, WebLogic 12c also runs perfectly on conventional systems, using all
the built-in optimizations and benefitting from of all the new built-in enhancements.
WebLogic 12c has been optimized for deployment and running on:

•	 Oracle's Private Cloud, Exalogic
•	 Public Cloud
•	 Conventional systems

In this chapter we will have a closer look in the diverse tools and interfaces for
development, deployment, upgrades, and other new configuration features.

Develop, build, compile, and deploy on
WebLogic 12c
Developing an application is quite a complicated process from the first version of an
application until it becomes live and is in production status. WebLogic 12c provides
you the best help and support to make it an easy, quick but also reliable process with
finally the desired results.

Deployment, Installation, and Configuration Features

[38]

Lightweight development with WebLogic 12c
Just for pure development, Oracle provides a lightweight ZIP file installation,
especially meant for quick building of an environment. This is a complete WebLogic
Server installation in a ZIP file for development use only and supported on
Windows, Linux, and Mac OS X systems. The extracted installation contains all the
necessary artifacts you need to develop applications on WebLogic Server, but uses
less disk space than a normal WebLogic Server distribution. It includes all WebLogic
Server components except for the following:

•	 Samples
•	 Derby database
•	 Webserver plugins
•	 Native JNI libraries for unsupported platforms
•	 Administration Console help files for non-English locales
•	 Oracle Configuration Management (OCM) and ADR files
•	 Sun SDK and Oracle JRockit SDK
•	 Coherence libraries

For developers, this is benefit, because you just unzip it, create a WebLogic
Domain, start it, and within a few minutes you will have it running, ready for your
applications. The supplementary ZIP file provides you the samples and the Derby
database in case you might need it.

Chapter 3

[39]

To download the ZIP installer, go to Oracle Technology Network, there you will see
a link for ZIP distribution.

Some hints and tips using development on
WebLogic 12c
To use and configure your development environment as optimally as you can,
consider the following hints:

Using FastSwap
When you want to use the FastSwap option, please think about the following
best practices:

•	 In the weblogic-application.xml descriptor, FastSwap should be enabled
in your exploded deployment archive

•	 The compiled source code modules should be in their corresponding
directories in the exploded deployment structure

•	 Do not use archives, must be unpackaged classes

Deployment, Installation, and Configuration Features

[40]

•	 Deploy application to WebLogic Server using the exploded
deployment structure

•	 Configure your favorite IDE to directly compile classes in the exploded
deployment structure

•	 In your IDE, you should develop, edit, and autocompile immediately

Using the wlx option
Standard WebLogic Server starts up with the wls option. The default is wls, which
starts all the WebLogic Server services, including EJB, JMS, connector, clustering,
deployment, and management.

The wlx option starts a server instance that excludes the following services, making
for a lighter weight runtime footprint:

•	 Enterprise JavaBeans (EJB)
•	 Java EE Connecter Architecture (JCA)
•	 Java Message Service (JMS)

Using WebLogic server tooling
WebLogic Server provides a wide variety of helpful tooling to help developers.

•	 Incorporate into development process as necessary
•	 Before using it, set environment before executing

<DOMAIN_HOME>/bin/setDomainEnv.cmd(sh)

For several types of applications, there are tools available as follows:

•	 weblogic.appc: Compiles JSPs, EJB, and validates deployment descriptors
•	 weblogic.marathon.ddinit.EarInit: Generates EAR-level

deployment descriptors
•	 weblogic.marathon.ddinit.WebInit: Generates web module

deployment descriptors

Chapter 3

[41]

•	 weblogic.DDConverter: Converts deployment descriptors to current
WLS version

•	 weblogic.Deployer: Command-line deployment utility
•	 weblogic.PlanGenerator: Generates a template deployment plan for

an application

Standard Java IDE support
To support developers in their work, WebLogic 12c supports a few IDEs to develop,
build, compile, and deploy their Java applications onto WebLogic Server. WebLogic
12c supports the following IDEs.

Eclipse and Oracle Enterprise Pack for Eclipse
(12.1.1.0)
In November 1998, IBM began creating a development tool platform that
eventually became known as Eclipse, as a new Java IDE to create new
products and applications.

Eclipse was based on an open, free platform, but that base would be complemented
by commercial companies encouraged to create for-profit tools built on top of the
Eclipse platform. Most of the committers and contributors to Eclipse came from a
short list of the commercial vendors, with IBM being the largest contributor.

Also, Oracle is now one of the contributors with its Enterprise Pack for Eclipse,
used as a set of plugins designed to support Java EE development, if you use
Eclipse as your IDE.

At the time of writing this book, Oracle hasn't released JDeveloper 12c, OSB 12c,
or SOA Suite 12c is not yet available on WebLogic 12c, but in this case, you can use
Eclipse in combination with the Oracle Enterprise for Eclipse 12.1.1 (OEPE), so you
still can build WebLogic SCA application and deploy it on WebLogic 12c.

Deployment, Installation, and Configuration Features

[42]

To build SCA applications in WebLogic, use WAR located at wlserver_12.1\
common\deployable-libraries\weblogic-sca-1.1.war as a shared library and
target it to the server instance you want to deploy your SCA application to.

Oracle Enterprise Pack for Eclipse 12c provides the following key features:

•	 Oracle Application Development Framework Support, a set of plugins to
create, configure, and run Oracle ADF applications.

•	 WebLogic Server support. You can:
	° Develop applications faster with virtual EAR technology
	° Deploy applications remotely
	° Edit deployment descriptors and plans
	° Support for WebLogic Shared Library
	° Support for WebLogic SCA
	° Support for WLST and python syntax
	° Support for XMLBeans
	° You can use EJBGen
	° Support for Web services

•	 Support for Oracle's Public Cloud. You can deploy your applications to the
Cloud. You can specify to target your applications to the Cloud.

Chapter 3

[43]

•	 Support for Web Services. Use standard Web Service technologies, such as
XML, SOAP, and WSDL.

•	 Oracle Database Support lets you connect and query Oracle Databases.
•	 Support for Object Relational Mapping, Spring, and Web Application

Development, using a technology called AppXray for analyzing the JSP
pages, Java source files, resource bundles, and web configuration files.

•	 Support for coherence.

NetBeans IDE 7.1
Another well-known IDE for developing Java EE applications is NetBeans. NetBeans
IDE is a free, open source IDE ,written in Java and can run on Windows, Mac OS,
Linux, Solaris, and other platforms supporting a compatible JVM. The JDK comes
bundled with the release.

NetBeans 7.1 provides support for WebLogic 12c. The IDE works in fact with any
standard Java Enterprise Edition (Java EE) container, such as GlassFish Server Open
Source Edition 3.1.1, WebLogic 12c and 11g, Apache Tomcat, and JBoss.

The following screenshot shows you the creation of a new Web Application for
deployment to WebLogic 12c:

Deployment, Installation, and Configuration Features

[44]

Other expected IDEs
You might expect JDeveloper 12c, but at the time of publishing this book this version
was not yet available. Oracle will release with this version release during 2012, along
with other Fusion Middleware Products which are not yet on the 12c release such as
Oracle SOA/BPM Suite and Oracle Service Bus.

Another IDE that is coming up to support WebLogic 12c is IntelliJ's IDEA from
JetBrains, and then the open Community Edition.

Some features that IntelliJ IDEA has are:

•	 Rich Code Editor understanding various code syntaxes. You can refactor and
inspect your code. Navigation is good and clear. Also, full support for Java 7.

•	 Various test integrations such as JUnit and TestNG plus its own test
runner UI.

•	 Diverse setups for projects and builds if you use Maven, Gradle, or
Ant-based projects.

•	 Google Android development including latest SDK support.
•	 User interface and integration for version control systems, such as

Subversion, Git/GitHub, Mercurial, and CVS.
•	 An XML editor with a built-in Java XML interface.
•	 If you are developing Java applications for desktops you can use the Swing

UI designer.

WebLogic 12c and Maven integration
When working on a project, it is good to have a central system that controls and
builds your software projects. One well-known tool for this from Apache is Maven.

Chapter 3

[45]

So in general, Maven is:

•	 An automated build system
•	 A project management system
•	 A library and dependency handling system
•	 A project description system

•	 A site generation system

With Maven you can keep a set of standards, and maintain project lifecycling. You
can define phases in your lifecycle like for instance when you'd like to execute
a particular build or plugin. An important thing within Maven is the project
object model.

This is well known to Maven users. If your project is using a well-defined project
object model (POM), Maven can then apply cross-cutting logic from a set of shared
or custom plugins.

The project object model (POM)
One of the fundamentals in Maven is of course the POM. It describes all kinds
of important data of a project such as the project, its name/version, type, and
dependencies. It standardizes your configuration and standard directory layout
for project, so you do not need to configure, and no path settings are required.

POM can automate building and packaging and it bundles all tests, resources,
and classes.

With the POM you will have well-defined project life cycling.

In the following screenshot, you can see the Maven Build process:

Project pom.xml

Local Repository

Custom Plugins

Maven Plugins

Maven Build Package

www.allitebooks.com

http://www.allitebooks.org

Deployment, Installation, and Configuration Features

[46]

Maven support was already introduced in 11g R1 PS3 (10.3.4) supporting
Application Deployment operations with:

•	 Maven Mojo + WebLogic Deployer + WebLogic Client
•	 Supported Deployment Lifecycle operations: list-apps, deploy/undeploy,

start, stop, and update

WebLogic 12c provides additional functionality since the 11g release like:

•	 Installation of Weblogic ZIP distribution onto a machine where WebLogic
has not been installed

•	 WebLogic domain creation
•	 Start/Stop WebLogic Servers
•	 Execute WLST Scripts

You can use Maven installation to install the WLS maven plugin.

See how the WebLogic Maven plugin is installed:

A typical pom.xml for the WebLogic Maven plugin can be seen in this line of
XML code:

<plugin>
<
groupId>com.oracle.weblogic</groupId>gp g gp
<plugin>
<
groupId>com.oracle.weblogic</groupId>
gp g gp
<artifactId>wls-maven-plugin</artifactId>

Chapter 3

[47]

<artifactId>wls-maven-plugin</artifactId>
<version>12.1.1.0</version>
<configuration>
<middlewareHome>c:\wls1211</middlewareHome>
<adminurl>t3://127.0.0.1</adminurl>
<build>
<plugins>
<build>
<plugins>
<version>12.1.1.0</version>
<configuration>
<middlewareHome>c:\wls1211</middlewareHome>
<adminurl>t3://127.0.0.1</adminurl>
<user>weblogic</user>
<password>welcome1</password>
<user>weblogic</user>
<password>welcome1</password>
</configuration>
</plugin>
</configuration>
</plugin>
</plugins>
</plugins>
</build></build>

One of the nice features is that you can manipulate your WebLogic domain by
stopping, starting, deploying, undeploying, and redeploying.

With a simple Maven command, you can start the domain:

mvn wls:start-server

Deployment, Installation, and Configuration Features

[48]

Advanced features of WebLogic Maven plugin
An advanced feature is automating deployment parameters using Maven properties.

You can bind the WebLogic plugin to Maven execution phases for automating
deployment and provisioning operations. Also, you can use Maven profiles for
multiple deployment targets and simplify configuration with inheritance and
integration with continuous integration servers.

Another advanced feature is to associate WebLogic tasks with Maven phases. The
Maven plugin goals can be bound to a Maven phase to execute during that phase.
This can be very useful for automating deployment of target application to a server
for testing as part of Maven lifecycle. Use the <executions> section of the <plugin>
tag to specify the target phase and the goal(s) to execute.

Here you can see the plugin for phase goals:

Chapter 3

[49]

Maven support for several IDEs
Maven provides support for IDEs used for WebLogic development.

Some common features:

•	 Materialize projects from Maven POM
•	 Dependency integration with Compile/Test/Run classpath
•	 Maven repository browsing
•	 Multimodule Maven project support
•	 Form-based POM Editor
•	 Dependency graph

Maven for Eclipse/OEPE
To support Eclipse with Maven, you can download and install the open-source
plugin calledM2Eclipse from Sonatype. With this plugin, you can do the
following things:

•	 Create and export Maven projects
•	 Dependency management and integration with the Eclipse classpath
•	 Automatic dependency downloads and classpath updates
•	 Create projects with Maven Archetypes
•	 Browse and searching remote Maven repositories
•	 POM management with automatic update to dependency list
•	 Adapt nested multimodule Maven projects to the Eclipse IDE
•	 Form-based and text-based POM Editor
•	 GUI presentation of dependency tree and resolved dependencies

Deployment, Installation, and Configuration Features

[50]

NetBeans and Maven
NetBeans 6.7+ provides native support for Maven so you can create or import
Maven projects.

Some other features are as follows:

•	 Manage dependencies
•	 Dependency graph viewer
•	 Run/Test projects
•	 Maven repository browser
•	 Can also push a Maven job directly to a Hudson CI server as build job

Chapter 3

[51]

Classloading and the Classloading Analysis
Tool (CAT)
Always a matter of concern with developed applications is: how does the application
start, and which classes, application, or server side will be loaded and in what order
during startup phase. Also, conflicts between application classes and server classes
can decrease application functionality or even make an application to start.

As a developer, you are responsible for developing and assembling applications, so
make use of many sources of code/libraries within applications.

•	 Use in-house libraries + Spring, Xerces, Log4J, apache-commons-*, and so on
•	 Understanding how class loading works is important to make correct and

efficient use of Java libraries
•	 What classes get loaded from where
•	 Efficiently reusing shared libraries
•	 Avoiding ClassCastExceptions
•	 WebLogic Server class loading is a powerful mechanism that can be used to

good effect
•	 Reuse of common shared libraries
•	 Filtering Classloader to control library visibility
•	 Construction of custom module Classloader hierarchies

Overview of Java EE application Classpath
Within the Java EE implementation standards, you can identify the following
classpaths:

EAR application classpath:

•	 APP-INF/classes/

•	 APP-INF/lib/*.jar

•	 Manifest classpath:
	° (EAR-library-classpath)*

	° (JAR-library-classpath)*

WAR application classpath:

•	 WEB-INF/classes/

•	 WEB-INF/*.jar

Deployment, Installation, and Configuration Features

[52]

•	 Manifest classpath:
	° (WAR-library-classpath)*

	° (JAR-library-classpath)*

	° (EAR-Application-classpath)

To avoid Classloader conflicts, use filtering. This enables classes to be loaded from an
application-supplied library first. Classloading filtering has the following features:

•	 Changes the delegation model from parent to child first
•	 Works as a barrier to prevent parent from supplying class
•	 Does not load classes itself
•	 Useful in scenarios where application needs to use a different version of a

framework that is already bundled with the server
•	 Xerces, Spring, Ant, Commons-Logging

The following is an application with a list of packages in the deployment descriptor:

<weblogic-application>
...
<prefer-application-packages>
<package-name>org.apache.xerces.*</package-name>
<package-name>org.apache.commons.*</package-name>
<package-name>org.apache.log4j.*</package-name>
</prefer-application-packages>
...
</weblogic-application>

Built-in WLS CAT (ClassLoading Analysis Tool)
Starting from WebLogic 10.3.4, the WLS-CAT tool was a built-in tool for analyzing
classes from the Classloader configuration of an application. It is web-based and
you can easily detect Classloading issues, doing some debugging in an application's
classpath, and even giving clues how to resolve it. It's a standalone web application,
located in the WebLogic Server Home,/server/lib/wls-cat.war, and it has a
reference to every deployed application.

Chapter 3

[53]

By clicking on the link, WLS-CAT starts up for that specific application and gives
you details about the application classes and possible conflicts. WLS- CAT analyzes
classes loaded by the system classpath Classloader and the WebLogic Server main
application Classloaders. You can perform analysis at the class, package, or JAR level.

WLS-CAT could tell you to use the web app Classloader by setting the prefer-
application-packages in your weblogic.xml as specified in the preceding code.

The following is the detailed view of a Classload analysis:

Deployment, Installation, and Configuration Features

[54]

The WLS-CAT is a very powerful and smart tool which gives you more knowledge
about Classloading hierarchies, conflicts, and solutions.

Deployment descriptor support for GlassFish
Server
GlassFish Server offers some support for weblogic-application.xml, weblogic.
xml, and weblogic-webservices.xml deployment descriptor files. WebLogic
Server 12c is able to easily deploy web applications developed for GlassFish, reading
the glassfish-web.xml descriptor, and automatically applying a set of common
configuration elements to the web application when it is running on WebLogic
Server. The element in weblogic-application.xml that GlassFish Server supports
is security. The equivalent element in the glassfish-application.xml file is
security-role-mapping. As a consequence, an application that has been developed for
Glassfish and deployed on that environment can easily be migrated on a Weblogic
platform by a simple re-deploy. Of course, this is a subject for discussion depending
on the application's security model since that will have to be accommodated for the
Weblogic Security Framework.

See GlassFish redeployment to WebLogic in action:

Chapter 3

[55]

Cloud development with WebLogic 12c
As been said before, the c in WebLogic Server 12c stands for cloud. WebLogic
Server 12c is optimized to run as a high-performance, mission-critical, elastic-cloud
infrastructure on the Exalogic Cloud. The Exalogic Cloud is tested and tuned to
provide the best foundation for Java applications, Oracle applications, and other
enterprise applications.

The Exalogic Elastic Cloud is a component of Oracle's Cloud Application
Foundation, the company's next-gen app infrastructure. (Oracle calls it the world's
first and only engineered system for cloud computing). It combines the Exalogic cloud
and the WebLogic Server with Tuxedo for C/C++/COBOL, Oracle's Coherence in-
memory data grid, the JRockit and Hotspot Java VMs, Oracle Enterprise Manager,
and the Oracle Virtual Assembly Builder.

This release is part of Oracle's Java Cloud Service. The Java Cloud Service supports
development and deployment from multiple Java-based integrated development
environments (IDEs), including Oracle's own JDeveloper, its open-source NetBeans
IDE and the Eclipse environment.

Installation and upgrades with WebLogic 12c
When WebLogic 12c was announced on December 1, 2011, a few days later the new
release was available at OTN. Developers, administrators, and other technicians
started downloading it to play around.

www.allitebooks.com

http://www.allitebooks.org

Deployment, Installation, and Configuration Features

[56]

The following types of WebLogic Server installers are available:

•	 OS-specific Package installer: This type of installer includes the JDKs for the
selected platform. The installer can be an .exe (Windows) file or a .bin
(Linux, Mac) file.

•	 Generic Package installer: This is a JAR file without the JRockit SDK and Sun
JDK. You will need to pre-install Java for this type of installation.

•	 Upgrade installer: Upgrade installers allow you to upgrade an existing
WebLogic Server installation to the current patch release. For example, if you
have WebLogic Server 10.3.0 installed, you can use an Upgrade installer to
upgrade your installation to WebLogic Server 10.3.6.

The installation process hasn't been changed from its prior release, and is pretty
straightforward. Besides changing some splash-screens and version numbers,
everything is still the same

Also after installation, the software directory structure seems pretty much the same,
except of course, with updated software and version numbers.

Chapter 3

[57]

Available Installers:

Filename Description
wls1211_generic.jar For installations on any supported platform on which

Java is already installed. Includes WebLogic Server and
Coherence, but without JDKs.

wls1211_linux32.bin For installations on Linux x86 32-bit machines. Includes
WebLogic Server, Coherence, Sun SDK 1.6_29, and
Oracle JRockit 1.6_29.

wls1211_solaris32.bin For installations on Solaris 32-bit machines. Includes
WebLogic Server, Coherence, Sun SDK 1.6_29, and
Oracle JRockit 1.6_29.

wls1211_win32.exe For installations on Windows 32-bit machines. Includes
WebLogic Server, Coherence, Sun SDK 1.6_29, and
Oracle JRockit 1.6_29.

wls1211_dev.zip Development-only installer that extracts a complete
WebLogic Server installation.

wls1211_dev_supplemental.
zip

Contains additional files that supplement the
development-only installer (wls1036_dev.zip).

Upgrading to WebLogic 12c
Upgrades are available for WebLogic 8.1 up to the latest version 10.3.5. You can do
the upgrade by using the patchset assistant or upgrade wizard. Also upgrades from
IAS, GlassFish, and JBoss are supported.

Available upgrade strategies are:

•	 Internet Application Server: Automated tooling.
•	 WLS11g: simple upgrade. Use domain upgrade wizard if you are an existing

WebLogic customer on WebLogic version 8, 9 or 10.X. It is not necessary for
WebLogic Server applications to be undeployed. In most cases, WebLogic
Server applications can be run without modifications in the new WebLogic
Server 12c. Upgrade script can be found in WL_HOME/common/bin.

•	 Glassfish: simple redeploy.
•	 JBoss: migration services.

Deployment, Installation, and Configuration Features

[58]

New configuration features in WebLogic 12c
At the launch of WebLogic 12c, Oracle told us there would be more than 200 new
features available in this release. We won't discuss all 200 features but here are the
most important ones. Except for supporting all the new JAVA EE6 features, the
following features are also added or changed.

JDK 7 certification
Not immediately available but during February 2012 JDK7 support came out
through an updated Oracle WebLogic Server 12.1.1 distribution. This distribution
includes patches that enable Java SE Development Kit (JDK) 7 certification and
provide other product optimizations. The patches can be found in the MW_HOME/
patch_wls1211/patch_jars.

Administration Console
Several Admin Console changes have been made to support the implementation of
Java EE 6, including changes to:

•	 Deployment
•	 Application container
•	 SCA container
•	 Split source
•	 Application and module naming

NodeManager
The default value for startScriptEnabled has been changed to true as of this
release. In previous releases, the default was false.

JDBC
WebLogic 12c supports data sources using Java EE 6 specifications and provides an
extended set of WebLogic data source configuration attributes.

The name element identifies a Datasource and is registered with JNDI. The value
specified in the name element begins with a namespace scope:

•	 java:comp: Names in this namespace use single components
•	 java:module: Shared by all components in a module, for example, the EJB

components defined in an ejb-jar.xml file

Chapter 3

[59]

•	 java:app: Shared by all components and modules in an application, for
example, the application-client, web, and EJB components in a .ear file

•	 java:global: Shared by all the applications in the server

WebLogic 12c has Active GridLink used as an optimalization for RAC. It uses Fast
Connection Failover for faster RAC failure detection.

Security
Security is a very important subject in today's IT systems. WebLogic 12c support,
along with support for Java EE 6, also some new or enhanced security features. We
will now look at some security features.

Resource Adapter security
WebLogic 12c adds support for the security context in the Admin Console creating
inbound EIS-to-WebLogic principal mappings, which map EIS principals, such as
users or groups defined in the EIS security domain, to corresponding principals in
the WebLogic domain.

Java Authentication SPI for containers (JASPIC) support
The JASPIC specification defines a service provider interface (SPI) for authentication
providers that use message authentication mechanisms, and can be integrated in server
web application message processing containers or runtimes. This message processing
runtime uses this SPI at the identified message processing points to delegate the
corresponding message security processing to the authentication providers.

SSL
Some certificates are removed from 12c such as Certicom.

JSSE is the only SSL implementation that is supported in WebLogic Server 12.1.1. The
default value for JSSEEnabled has been changed to true. Previous releases have it
set to false. However, even if JSSEEnabled is set to false, it will be ignored. The
MBean value will not be changed, either in memory or in the persisted config.xml
file. WebLogic Server will continue to use JSSE, but will give a warning.

Deployment, Installation, and Configuration Features

[60]

Standalone clients
The WebLogic Thin T3 Client JAR (wlthint3client.jar) supports GlassFish
application server version 3.1 and higher. It is a lightweight alternative to the
wlfullclient.jar and wlclient.jar (IIOP) remote client JARs. The Thin T3
client has a minimal footprint while providing access to a rich set of APIs that
are appropriate for client usage. As you may expect, the Thin T3 Client uses the
WebLogic T3 protocol, which provides significant performance improvements
over wlclient.jar, which uses the IIOP protocol.

The Thin T3 Client is the recommended option for most remote client use cases.
There are some limitations in the Thin T3 Client as outlined here. For those few
use cases, you may need to use the full client or the IIOP thin client.

The Thin T3 Client can be used in standalone applications, and is also designed for
applications running on foreign (non-WebLogic) servers. One common use case is
integration with WebLogic JMS destinations.

Deprecated: weblogic.management.username and
weblogic.management.password
In WebLogic 12c, the boot username and password system properties weblogic.
management.username and weblogic.management.password have been deprecated
and will be removed in a future release, and you will no longer be able to specify the
username and password in the startscript for starting in production mode.

The only thing to use is boot.properties. boot.properties file should be created
manually when running in the Production mode and should be placed in the
Domain directory in the security folder of the Admin Server.

Web Services
Of course, Web Services in 12c are also Java EE6 compliant. For instance, it includes
support for EJB 3.1. Specifically, WebLogic Web Services can be packaged as follows:

•	 EJB in a WAR file
•	 Singleton EJB

Also, some new samples for RESTful Web Service (JAX-RS) are added.

EclipseLink MOXy (JAXB) is used for data binding and JAXB provider. The
EclipseLink MOXy component binds Java classes to XML schemas. MOXy
implements JAXB to provide mapping information through annotations as
well as providing support for storing the mappings in XML format.

Chapter 3

[61]

The UDDI v2.0 registry and UDDIExplorer applications have been removed.
Recommended is to consider using Oracle Enterprise Repository or Oracle
Service Registry, which provide SOA visibility and governance.

Exalogic features
All specific Exalogic features, such as Oracle Virtual Assembly Builder, Exabus,
and Oracle Traffic Director will be discussed in Chapter 6, Oracle WebLogic 12c to
the Cloud: Exalogic.

To start using WebLogic 12c for Exalogic, you should set it in the Admin Console as
shown in the following screenshot:

Deployment, Installation, and Configuration Features

[62]

WebLogic 12c New feature TLog Store
In WebLogic pre-12c, the transaction logs were file-based only. In WebLogic 12c this
has been enhanced with the possibility to store TLogs in a database. Here are the
guidelines to achieve this:

First, create a JDBC data source. This can be any type (generic, multidata source,
or GridLink data source), the only constraint being that it must neither be XA nor
support Global Transactions.

Second, go to your server and select Configuration | Services.

There's a new section here, Transaction Log Store. Switch the type to JDBC and
specify your data source which should be in the drop-down list.

You can leave the prefix as is.

Summary
Over more than 200 features! Too many to discuss them all; some are minor updates,
others are much more important. I hope this chapter has given you a good overview
about the most important ones. Let's rush to the next chapter!

Integrated and External
Services

In the previous chapters, we've seen WebLogic 12c's Java EE 6 readiness, we've seen
how and what tools we can use to deploy our applications on WebLogic 12c, but now
we have to dive into WebLogic Server itself to discover the exciting features it has
in it.

At server side, WebLogic serves you a lot of interfaces to process the data. We will
discuss them in this chapter, but also which new features a typical administrator
should know before starting to use or upgrade to WebLogic 12c.

JDBC services
JDBC services have been enhanced significantly, with focus on availability and load
balancing. We will dive into the new features supported in this release.

Active GridLink and RAC integration
Already available since version 10.3.4, a new feature for connection to RAC
databases is Active GridLink for RAC. As you might know, RAC stands for Real
Application Clusters and is a high-availability solution for Oracle databases. The
database provides high availability in a cluster of RAC instances. Active GridLink
for RAC and use of GridLink data sources are also available in this version as part of
WebLogic Suite. This feature uses Oracle Notification Service (ONS) to detect states
and changes of an Oracle RAC instance. This makes GridLink very scalable because
the number of services in the cluster can be dynamically increased.

Integrated and External Services

[64]

The following screenshot shows how to test a GridLink Datasource:

Already in WebLogic 9.2, RAC was supported with Oracle 9i RAC, but was called
a Multi Datasource configuration and didn't include all the features of Oracle RAC
service configurations, you will need to create a separate multidata source for each
defined service. The configuration is pretty static and needs manual intervention for
adding or removing new Datasources.

Fan enabling
When creating a GridLink Datasource, you'll see the FAN enabled checkbox and a
place to enter the ONS details. FAN is Fast Application Notification, which acts on
certain application events in the database which will be used to balance the load. If
FAN is not enabled, the default Round-Robin algorithm will be used.

This is enabled by default and the UI makes sure you enter at least one ONS
server (of course, as FAN is not going to work otherwise). You'll also notice the
wallet parameters which allow the ONS messages to be sent over SSL—usually
recommended in production. A wallet is used for storing SSL Certificates.

Chapter 4

[65]

New JDBC features for WebLogic 12c
This release includes the following new and changed features:

•	 The Capacity Increment Attribute: WebLogic first uses the existing
connections available in the pool when a connection request is issued.
If there is no match, this parameter takes care of creating a new one.

•	 The MinCapacity Attribute: The MinCapacity attribute sets the minimum
number of physical connections that a connection pool can contain after it's
initialized. The initial capacity that previously handled both the initial and
minimum capacity for the pool has been split into two attributes:

	° MinCapacity defaults to InitialCapacity if not set;
InitialCapacity continues to default to 1.

	° MinCapacity is only used for shrinking calculations. If you don't set
MinCapacity, InitialCapacity is used.

Integrated and External Services

[66]

•	 Define Fatal Error Codes: To indicate that the backend database is
unavailable or unreachable on a connection, you can work with fatal error.
The connection will be marked as invalid and taken out of the pool. The
errors may include deployment errors that cause a server boot to fail, and
connection errors.
You can specify this with an exception code within a SQLException (by
sqlException.getErrorCode()), which indicates that a fatal error has
occurred and the connection is no longer healthy and is to be removed from
the connection pool. For Oracle databases, the following fatal error codes are
already available within WLS and you don't have to configure them:

	° 3113—end-of-file on communication channel
	° 3114—not connected to Oracle
	° 1033—Oracle initialization or shutdown in progress
	° 1034—Oracle not available
	° 1089—immediate shutdown in progress - no operations are permitted
	° 1090—shutdown in progress - connection is not permitted
	° 17002—I/O exception

•	 Data Source Profile Logging: In previous versions, data source events were
recorded as WLDF events. For better usability and performance, WebLogic
Server now uses a data source profile log to store events. The profile log has
log-rotation—the ability to configure, rotate, and retire old data.
You can see where to set your data source logging profile in the
following screenshot:

Chapter 4

[67]

•	 Application-Scoped Drivers: It is now possible to include a database driver
in the EAR/WAR file that contains an application-scoped data source.
You do not have to update the classpath of the manifest file to include
the driver location.
Oracle BI Server Support: Just select Oracle BI Server as Database Type
when creating a new generic data source to interoperate with the Oracle
BI Server.

•	 Keep Connection After Global Transaction: This new feature enables
WebLogic Server to keep a physical connection associated with a logical
connection when committing or rolling back a global transaction. Defined
as KeepConnAfterGlobalTx in JDBCXAParamsBean.

Integrated and External Services

[68]

•	 Session Affinity Policy: Web applications where a user session has back-
to-back OLTP should have better performance. In some cases, repeated
operations against the same data sets are being processed at the same RAC
instance. A GridLink data source uses the session affinity policy to improve
performance by directing the database operations of a servlet session to the
same RAC instance in an RAC cluster. A GridLink data source monitors
RAC load balancing advisories (LBAs) using the AffEnabled attribute to
determine if RAC affinity is enabled for an RAC cluster. The first connection
request is load balanced using Runtime Connection Load-Balancing (RCLB)
and is assigned an Affinity context. All the next connection requests will be
transferred to the same Oracle RAC instance using the Affinity context of the
first connection until the session ends or the transaction completes.

•	 Connection Labeling: Applications often initialize or re-initialize a
connection, but with Connection Labeling, an application requests a
connection with the desired label from the connection pool. By associating
particular labels with particular connection states, an application can retrieve
an already initialized connection from the pool without re-initialization. The
oracle.ucp.jdbc.LabelableConnection interface is used to apply and
remove connection labels, as well as retrieve labels that have been set on a
connection. The oracle.ucp.ConnectionLabelingCallback interface will
act when a labeled connection is requested but there are no connections in
the pool that matche already existing labeled connections.

•	 New Debug Scopes: Some new debug options are available like:
	° weblogic.jdbc.rac.DebugJDBCUCP—low-level UCP debugging.

This includes both required and optional callback interfaces
that are used to implement connection pool features, like the
ConnectionAffinityCallback interface. This is used to create a
callback that enables or disables connection affinity and can also be
used to customize connection affinity behavior. You can set UCP
debugging directly using:
oracle.ucp.level = FINEST;
oracle.ucp.jdbc.PoolDataSource = WARNING;

	° weblogic.jdbc.rac.DebugJDBCREPLAY—REPLAY debugging.
	° weblogic.jdbc.transaction.DebugJTAJDBC—transaction

debugging. To get this level of tracing for Oracle, you need
to use ojdbc6_g.jar instead of ojdbc6.jar.

Chapter 4

[69]

	° weblogic.jdbc.rac.DebugJDBCONS—low-level ONS debugging.
A GridLink data source provides connectivity between WebLogic
Server and an Oracle Database service, which may include multiple
Oracle RAC clusters. It uses the Oracle Notification Service (ONS) to
adaptively respond to state changes in an Oracle RAC instance, so
with this sort of debugging you can identify problems with the
ONS Client.

	° weblogic.jdbc.rac.DebugJDBCRAC—RAC debugging.

JMS Services
Java Messaging Services within WebLogic 12c hasn't been significantly changed. The
version of JMS that is running is still at release 1.1.

The following are some of the changes:

•	 Weighted Distributed Destinations are deprecated since WebLogic Server
10.3.4.0. In a weighted distributed destination, the member destinations do
not have a consistent configuration of all distributed destination parameters,
particularly in regards to weighting, security, persistence, paging, and
quotas. Recommended now is to use Uniform Distributed Destinations,
because UDD can be used cluster wide.
Partitioned Distributed Topics give you the ability to load balance messages
to members which provide a highly scalable and available publishing
mechanism. This allows for more than one durable subscription to be
made available for a particular subscriber.

Producer Partitioned Topic

ConnectionID B

ConnectionID A

M1 M2

M1

M2

M1

M2

B

A

B

A

Integrated and External Services

[70]

WebLogic introduces the concept of an unrestricted Client ID policy. With
this setting on a topic, more than one connection in a cluster can share the
same Client ID. The standard option of restricted enforces that only a single
connection with a particular Client ID can exist in a cluster. Unrestricted
Client ID policy allows more than one JMS connection to use the same
Client ID.
Shared Subscriptions allow multiple subscribers to share the same
subscription which enables parallel processing of messages of a single
subscription.
When creating a topic in WebLogic, set the Forwarding Policy to be
partitioned. This causes a message sent to a partitioned distributed topic
to be sent to a single physical member. In addition, the message will not be
forwarded to other members of the cluster if there are no consumers in the
current physical member.
If it's a high availability solution, then the listeners will need to connect
to each and every physical member across the cluster. When a physical
member becomes available/unavailable, WebLogic provides the
JmsDestinationAvailabilityHelper API which listens to events relating
to physical member availability and unavailability. Don't forget, the
Connection Factory that is being used should have Subscription Sharing
Policy set as Shareable.

•	 New Message-Driven Bean (MDB) activation configuration properties and
deployment that provide high availability and parallel processing.

Security services
An important service to leverage these days, covering all kinds of malicious attacks,
is security. In Java EE 6, there has been major improvements on various kinds
of interfaces. WebLogic already provided end-to-end security for applications.
WebLogic had already been proven of flexible in its security services and has a
lot of plugins to many other vendor security software.

Java Authentication Service Provider
Interface for Containers (JASPIC) support
JASPIC defines a service provider interface (SPI) from which authentication
providers implement message authentication mechanisms. These mechanism
can be used in web application's runtime containers

Chapter 4

[71]

This message processing runtime uses this SPI to match and delegate the
corresponding message security processing to the correct authentication providers
configured in the security realm. The authentication provider returns a subject based
on the authenticated user credentials Java Authorization Contract for Containers
(JACC) 1.4 Support.

This specification works with the javax.security.jacc package, together with
the weblogic.security.jacc package. The weblogic.security.jacc provides
a RoleMapper interface, which allows the passing in of roles and principal names
for JACC.

JACC is an alternative for the standard WebLogic Security Framework for EJBs and
Web Applications. JACC extends the Java 2 permission-based security model to EJBs
and Servlets, and is specified in JSR-115.

The WebLogic JACC provider fully complies with JSR-115. However, it does not
support dynamic role mapping or authorization decisions for resources other than
EJBs and Servlets. WebLogic JACC classes from the javax.security.jacc package
are used for role-to-principal mapping, but for better performance, and for more
flexibility regarding security features, it's better to use SSPI-based providers.

The following diagram shows you the security flow when using such a provider:

EJB

Servlet

JSP

Request1 2

Subject Resource

Context Handler
TRUE

3 9

WebLogic Security Framework

4
Subject Resource

Context Handler

Role Mapping Providers

Role Mappers

5
List of applicable

roles

7
PERMIT DENY or

ABSTAIN Authorization Providers

Access Decisions

6

8

Subject Resource

Context Handler,

Roles

TRUE

Adjudication Providers

Adjudicator

Integrated and External Services

[72]

RSA JSSE Provider
A third-party provider, the RSA JSSE Provider is now supported in Weblogic 12c.
It provides an interface for the Java Secure Socket Extension (JSSE). JSSE supports
SSLv3 and TLSv1, plus some algorithms, and a list of Cipher suites for Transport
Layer Security.

It can be statically registered in the JVM if you want to use it. In WebLogic 12c, you
will have to enable it manually by editing $JAVA_HOME/jre/lib/security/java.
security and set com.rsa.jsse.JsseProvider, as the first provider in the list.

#
List of providers and their preference orders (see above):
#
security.provider.1=com.rsa.jsse.JsseProvider
security.provider.2=sun.security.provider.Sun
security.provider.3=sun.security.rsa.SunRsaSign
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=sun.security.mscapi.SunMSCAPI

The JSSE standard API, available in the javax.net and javax.net.ssl
packages, covers:

•	 Secure (SSL) sockets and server sockets.
•	 A non-blocking engine for producing and consuming streams of SSL/TLS

data (SSLEngine).
•	 Factories for creating sockets, server sockets, SSL sockets, and SSL server

sockets. With socket factories, you can encapsulate socket creation and
configuration behavior.

•	 A class representing a secure socket context that acts as a factory for secure
socket factories and engines.

•	 Key and trust manager interfaces (including X.509-specific key and trust
managers), and factories that can be used for creating them.

•	 A class for secure HTTP URL connections (HTTPS).

SSL Implementation
SSL Implementation has been changed over several WebLogic versions, so let's have
a look about what it will offer you in WebLogic 12c.

Chapter 4

[73]

Because of the JSSE-based SSL Implementation, the Certicom-based SSL
implementation is removed and is no longer supported. It supports stronger
certificates, stronger than 128-bit such as TLS Cipher Suites or RSA.

Changes to SSLMBean
SSLMBean has been enhanced to support additional SSL configuration capabilities,
including the ability to enable or disable the JSSE adapter.

WebLogic Server fully supports SSL communication, which enables secure
communication between applications connected through the Web. WebLogic Server
12c includes support for using the Java Secure Socket Extension (JSSE) as the SSL
stack for the following:

•	 Inbound SSL connections
•	 Outbound SSL connections that use the WebLogic SSL APIs (you can also call

JSSE directly for outbound SSL connections)

As part of ConfigurationMBean, it indicates that the built-in SSL certificate
validation should be used to complete and validate the peer's certificate chain, then
the configured CertPathValidator security providers should be used to perform
extra validation on the chain.

JSSE/SSL
JSSE is the standard SSL implementation in WebLogic Server 12.1.1. These items had
to be changed to support it:

The default for JSSEEnabled has been changed to true. If it is set to false, it will
be ignored. WebLogic overrides it and continues to use JSSE. It will only give you
a warning, but the MBean will not be changed.

TLS 1.2 support
Together with SSL, WebLogic 12c supports the newest transport layer TLS 1.2.
The TLS protocol provides communication security over the Internet. The protocol
allows client/server applications to communicate in a way that is designed to
prevent eaves-dropping, tampering, or message forgery. The primary goal of the
TLS protocol is to provide privacy and data integrity between two communicating
applications. The protocol is composed of two layers: the TLS Record Protocol and
the TLS Handshake Protocol. At the lowest level, layered on top of some reliable
transport protocol (for example, TCP [TCP]), is the TLS Record Protocol.

Integrated and External Services

[74]

Usually the most recent version of the SSL or TLS protocol is good enough but clients
may not support it. You can also specify the enabled SSL or TLS protocol based on
circumstances (compatibility, SSL performance, and environments with maximum
security requirements) that make the TLS V1 protocol more desirable for enabling
acceptable SSL and TLS protocols.

Specifying the weblogic.security.SSL.protocolVersion system property in a
command-line argument that starts WebLogic Server lets you specify the protocol
that is used for SSL connections.

You can set startup command-line arguments so that WebLogic Server supports only
SSL V3.0 or TLS connection:

•	 -Dweblogic.security.SSL.protocolVersion=SSL3

•	 -Dweblogic.security.SSL.protocolVersion=TLS1: This property value
enables any protocol starting with TLS for messages that are sent and
accepted such as TLS V1.0, TLS V1.1, and TLS V1.2.

•	 -Dweblogic.security.SSL.protocolVersion=ALL: This is the default.

Here you can see an example. Edit startWebLogic.sh and then add the
following code:

export JAVA_OPTION="${JAVA_OPTIONS} -Xmx1024m -Xms1024m -Dweblogic.
security.SSL.protocolVersion=SSL3"

Better support for Single Sign-On with
Microsoft Clients
WebLogic 12c supports a security provider, the Negotiate Identity Assertion
provider, to work with single sign-on (SSO) with Microsoft Active Directory clients.
This identity assertion provider decodes Simple and Protected Negotiate (SPNEGO)
tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps Kerberos
tokens to WebLogic users. SPNEGO stands for Simple and Protected GSSAPI
Negotiation Mechanism. It is a standardized interface for authentication (like JNDI is
for directory look-ups) and the default implementation for SPNEGO under Windows
is Kerberos (like LDAP is for JNDI).

WebLogic uses GSS-API to communicate with Kerberos. GSS-API is Generic Security
Service API. It provides a common interface for accessing different security services,
but most commonly Kerberos V5. WebLogic uses JAAS to authenticate to Kerberos.
The JAAS framework and the Kerberos mechanism required by the Java GSS-API
methods are built-in.

Chapter 4

[75]

A Negotiate Identity Assertion provider is required in your WebLogic security
realm in order to enable SSO with Microsoft clients. Furthermore, you need to
use the following startup arguments when you start WebLogic Server for
Kerberos authentication:

-Djavax.security.auth.useSubjectCredsOnly=false
-Djava.security.auth.login.config=krb5Login.conf

-Djava.security.krb5.realm=<ADRealm>
-Djava.security.krb5.kdc=<ADhostname>

New features supported in this release are:

•	 Use of several new encryption algorithms for mapped user accounts that
need to be encrypted. This version will support the default Windows
RC4-HMAC encryption algorithm, and AES-128 and AES-256.

•	 Support for Java SE clients.

Web Services
In the new WebLogic Server 12c JAVA EE 6 plays an important role so, inevitably,
Web Services also have new features and possibilities. Let's look at some of them.

WebLogic Web Services with Java EE 6
As been said before, WebLogic Server 12c fully supports the Java EE 6 specifications,
so Web Services are also supporting these since 2009. But of course now, in 12c
as well.

For instance, there is enhanced support for EJB 3.1. Support for Web Services in
EJB 3.1 is based on the Java API for XML-based Web Services (JAX-WS) 2.1
specification, as well as its predecessor, the Java API for XML-based RPC (JAX-RPC)
1.1. If you want to manipulate the structure of your SOAP message, you can use an
API called SAAJ (SOAP with Attachments API for Java). To register your XML, you
can use JAXR.

If you want to use some sort of remote protocol which is a bit similar to CORBA or
RMI, the JAX-RPC interface is quite useful. Finally, they can be packaged together
with an EJB in an EAR file.

Integrated and External Services

[76]

WebLogic 12c and Jersey JAX-RS RI
Version 1.9
Web Services in 12c now supports Jersey Java API for RESTful Web Services (JAX-
RS) according to the JSR-311 specifications. WebLogic won't use shared libraries for
this but uses Runtime MBeans for post-deployment manageability. Out of the box,
the Jersey bundle is not yet implemented as a shared library in WebLogic, but after
building and deploying to WebLogic, it shows up as a shared library; you can see
the jersey-bundle#1.1.1@1.1.5.1 library present on the server.

In the weblogic.xml deployment descriptor, you can see the references for
JAX-RS shared-library that will be deployed on the server, which you specified
during creating a building.

Chapter 4

[77]

RESTful Services with Java (JAX-RS) support is provided through Jersey, which is
the reference implementation for JAX-RS. This support was already added in 10.3.4
as part of the JAVA EE 6 specification. REST, other than SOAP, can be consumed
by any client, even with Ajax and JavaScript. It is more lightweight because it does
not parse XML, and consumes less bandwidth because it doesn't read the header
every time.

Support for EclipseLink MOXy (JAXB)
EclipseLink JAXB (MOXy) is now the default JAXB (JSR-222) provider in WebLogic
Server 12c. The EclipseLink MOXy component enables you to bind Java classes to
XML schemas. For implementing mapping through annotations, MOXy uses JAXB,
which also stores the mappings in an XML format. These mappings can be used for
handling complex structures of XML code, but you don't have to mirror the XML
schema into the JAVA class model anymore. The JAXB data binding process consists
of the following tasks:

•	 Bind—Binds XML Schema to Java classes, or value classes. Each class
provides access to the content via a set of JavaBean-style access methods.
Binding is managed by the JAXB schema compiler.

•	 Unmarshal—Converts the XML document to Java objects that can be
accessed by your Java code. Complex types and attribute declarations
are mapped to field properties using class values which uses get and
set methods.

•	 Marshal—Converts the Java objects back to XML content.

EclipseLink MOXy is one implementation of the standard runtime defined by the
JAXB specification. To specify EclipseLink MOXy as your JAXB provider:

•	 Add the JAXB APIs and eclipselink.jar on your WebLogic
Server's classpath

•	 Use a jaxb.properties file (in the same package as your domain classes

However, UDDI v2.0 Registry and UDDIExplorer, as well as WebLogic Web Services
8.1 Application Environment, are removed from WebLogic 12c.

Integrated and External Services

[78]

Summary
Oracle WebLogic 12c has made a huge effort to make it compatible with a huge range
of external systems, configurations, and so on. In almost every part, there have been
major and sometimes minor updates to make the Java Application Server the most
complete one.

Seeing all these new features, it is now time to look at the Cloud capabilities of
WebLogic 12c. First, we will have a look at how we can manage and monitor
WebLogic 12c with Enterprise Manager 12c.

Integration and Management
with Enterprise Manager 12c

Cloud Control
The more this book continues, the more we move on to the Cloud part which
is part of Oracle's future strategy. Before we come up with Exalogic in the final
chapter, we will first take a look at WebLogic's position in Oracle's Enterprise Cloud
Management. In this chapter, we will see how we can scale up WebLogic 12 into
Enterprise Manager 12c, how we can manage and monitor our environments, and
more interesting features it can offer us.

Enterprise Manager was the first in the product-line which Oracle brought to 12c and
it is the first complete Cloud Management Solution with Oracle Enterprise Manager.

Oracle Enterprise Manager 12c covers:

•	 Complete Lifecycle Management
•	 Integrated Cloud Stack Management
•	 Business-driven Application Management

What is Oracle Enterprise Manager 12c?
Oracle Enterprise Manager 12c (Cloud Control) is a complete solution for having a
centralized monitoring system framework built with:

•	 An Oracle Database which hosts a repository
•	 WebLogic Server which runs a Java EE application
•	 An ADF GUI for doing administration tasks
•	 Client agents for sending notifications to Enterprise Manager 12c

Integration and Management with Enterprise Manager 12c Cloud Control

[80]

Database hosts the so-called Oracle Management Repository(OMR), and WebLogic
the Management Service (OMS).

The ADF Web GUI is called Oracle Enterprise Manager Cloud Control. And at last,
there are server- and client-side plugins in the format of Oracle Virtualization. These
plugins are for Oracle Virtual Manager based systems.

All together, these products are bundled into one common name: Oracle Enterprise
Manager (OEM) or Enterprise Manager (EM).

Oracle Enterprise Manager 12c system
design
All the Oracle Enterprise Manager system components can be installed on one
single host. For development or testing purposes, or learning environments, this is a
good way to do, but in a production environment it is better to separate the various
components on different hosts, for better performance and no single point of failure.
Also for scaling purposes, this is a better way to do. For the Oracle Management
Repository, you can use RAC for the Oracle Management Repository database.

When you want to scale out the WebLogic and Oracle Management Service tier, you
can add a load-balancing solution to multiple frontend WebLogic servers hosting
the Oracle Management Service. Adding a load balancer with additional WebLogic
servers requires a virtual hostname for the WebLogic cluster, but in an existing
Oracle Enterprise Manager environment, a reconfiguration of all of your Oracle
Management Agents is necessary to resolve to the new virtual hostname. So when
you deploy Oracle Enterprise Manager, consider using a virtual hostname for the
web tier.

Enterprise Manager 12c (12.1.0.1) Grid Control requires a minimum of version
WLS 10.3.5. This brings a new and improved interface, which also includes cloud
computing management features such as charge back and metering.

Chapter 5

[81]

In the following diagram, you can see an architectural overview of an Enterprise
Manager system:

EM Agent

Load Balancer

EMGC Domain

EM Managed Server

HTTP

EM App

Oracle

Management

System

EM Agent EM Agent

RAC DB

EMRepos

RAC DB

EMRepos

So a best practice, as you can see in this diagram, is to place the administrative web
GUI and all the agents before the load balancer. They all can speak to one address in
the form of a virtual hostname using the standard HTTP port 80 or even SSL for the
GUI: and the agents connecting to the secure Management Port.

WebLogic Server Management: New in
Enterprise Manager 12c
To integrate WebLogic Server 12c with Enterprise Manager 12c, there is a
management pack available to provide a full and complete tool to manipulate,
configure, monitor, and diagnose a WebLogic Domain. If you enable such a
management pack, you are able to discover your WebLogic Server environments
to integrate into your Enterprise Manager 12c.

The WebLogic Server Management Pack Enterprise Edition can be used for managing
Oracle Fusion Middleware, Oracle WebLogic Server, and Oracle Application Server.
This pack provides capabilities for application performance management, business
transaction management, configuration management, service-level management,
coherence management, as well as lifecycle management for Oracle Application
Server, Oracle Fusion Middleware, and Oracle WebLogic Server software.

The features available with this pack are as follows:

•	 Configuration management features
•	 Application performance management features

Integration and Management with Enterprise Manager 12c Cloud Control

[82]

•	 Service-level management features
•	 Coherence management features
•	 Business Transaction Management features
•	 Lifecycle management features

Configuration management features
The WebLogic Server Management pack provides you rich management features
in order to configure, clone, and store your configurations. These configurations
can include:

•	 Detection of configuration changes: You can create a historical image
of a configuration, and some time later you can match a newly created
configuration with this so-called golden image to detect if there are any
changes and, if necessary, take actions on it.

•	 Compliance and provisioning: Provisioning is discussed later in this
chapter. The compliance framework makes it capable to give insight if your
systems match valid configurations, or if these systems are vulnerable to
configuration changes. Also, the framework can advise you to solve these
vulnerabilities. In fact, it is a defined set of rules to be used to the benefit of
your systems. You can run reports periodically to let Enterprise Manager 12c
advise you if and how to take actions.

WebLogic Server 12c provisioning and cloning
To be ready for a very demanding business, there is a possibility to clone your
domain out of a provisioning profile.

You can create a provisioning profile entity with binaries and domain configuration
or a middleware home entity with just binaries. You can clone a WebLogic domain
or Middleware home from software library entities. There is a new out-of-box
deployment procedure for deploying, redeploying, and undeploying Java EE
applications from the Cloud Control Console. You can now access provisioning
operations from the WebLogic domain menu.

You can clone WebLogic Domain from:

•	 Reference Install: This reduces time and eliminates errors in building
environments. The clone operation includes WebLogic Server binaries
and domain configuration files.

Chapter 5

[83]

•	 Software Library: Creates components in Software Library for Middleware
Home binaries and/or WebLogic Domain configuration. You can clone such
components to new hardware and specify domain configuration such as listen
addresses, ports, data sources, JMS stores, and security store/providers.

Cloning and provisioning can be achieved by using the Middleware
Provisioning tool.

By using the Middleware Provisioning deployment procedures you can:

•	 Clone a WebLogic Domain from an existing installation: You can clone
a WebLogic Domain from the existing installation. The Clone WebLogic
Domain option starts a wizard for cloning a WebLogic Domain from an
already existing reference domain that is already discovered or registered
with Cloud Control. In this cloning process you will have to specify
the following:

	° Host Credentials
	° On the Domain Properties page:

Domain Name, Domain Location (on file system)
Domain Administrator Username and Password
Unique Domain Name Identifier—used to name the farm target the
same as the WebLogic domain name but with the Farm_ prefix
Node Manager port address
Other resources such as JDBC, JMS, Security, Logging

Keep in mind to use a unique port for the AdminServer as it might conflict
with other already existing configurations.

Integration and Management with Enterprise Manager 12c Cloud Control

[84]

The following screenshot shows you the cloning wizard:

•	 Cloning a Middleware Home from an existing installation: To do this, keep
in mind that the hosts on which the Middleware domains are to be cloned
must be registered in Cloud Control. Also, read permissions are required
on the Middleware Home directory on the host machine on which the
Administration Server is running.
The following screenshot shows you the Middleware Cloning Wizard:

Chapter 5

[85]

•	 Cloning from a WebLogic Domain Provisioning Profile: With this you can
clone a WebLogic Domain from an already existing profile present in the
software library of the Enterprise Manager 12c.

•	 Cloning from an Oracle Middleware Home Gold Image: If you have
installed WebLogic software on a host and you want to keep an image of it,
you can create a so called Oracle Middleware Home Gold Image and save it
in the Software Library. Later, you can then use this gold image as the source
for future Middleware Home installations.

You will have to calculate how much an image (gold or domain provisioning) will
consume disk space in the software library. A rule of thumb for Golder Images and
Domain Provisioning is as follows:

•	 For Golden Images: Middleware Home Size + Space for temporary scripts
•	 For Domain Provisioning: Middleware Home Size + Domain Home Size +

Space for temporary scripts

Automating discovery and detecting
configuration changes
Oracle Enterprise Manager not only gathers a lot of configuration information about
WebLogic Server, but also its underlying hardware and operating system.

Templates for specifying what configuration items should be collected for Oracle
WebLogic Server and all its related components are available out of the box and
can be customized to collect only the relevant configuration items that IT personnel
require. Examples of information collected at regular intervals include:

•	 WebLogic Server software installations, including applied patches
•	 WebLogic Server configuration parameters (for example, ports, JVM

information, JDBC JMS resources, startup, and shutdown classes) and
configuration files

•	 Operating system settings, patches, kernel parameter settings, and
installed packages

•	 Hardware components such as CPU, RAM, disk storage, and
network devices

Configuration changes can be also monitored across the entire WebLogic Server
stack. From the application down to the hardware it is possible to detect all changes
for a specific configuration between a specified time frame. Changes that are applied
to an environment that previously worked fine but is suddenly not performing at an
acceptable level can be discovered very quickly.

Integration and Management with Enterprise Manager 12c Cloud Control

[86]

The following screenshot shows you the use of a typical WebLogic Comparison
Template:

WebLogic Server 12c monitoring
Monitoring your WebLogic Server environment can be done in many ways, through
scripting (WLST) or third-party vendors, but with the Enterprise Manager 12c you
will get a rich set of possibilities to watch and monitor how your system is doing it
now, in the past, and even in the future.

Performance monitoring and diagnostics of
WebLogic Server
Enterprise Manager 12c provides a wide variety of monitoring and diagnostics
options for WebLogic and its entire Middleware environment.

These monitoring options are very rich and every administrator can choose his/her
own favorites. For a typical WebLogic domain, you would like to monitor items
such as:

•	 Clusters and servers
•	 Applications (servlets, JSPs, EJBs)

Chapter 5

[87]

•	 Resources (JDBC connection pool, data sources)

Predefined metrics:

•	 Performance and availability
•	 Real-time monitoring
•	 Historical monitoring for trending and reporting

The following screenshot shows you the WebLogic Server summary page:

The following capabilities are available:

•	 Customizable performance summaries
•	 Out-of-box metrics
•	 Metric extensions
•	 Composite application dashboard
•	 Request monitoring
•	 JVM diagnostic
•	 Middleware diagnostic advisor
•	 Diagnostic snapshots
•	 Monitoring for deployed applications
•	 Application components dependency and performance

Integration and Management with Enterprise Manager 12c Cloud Control

[88]

•	 Log viewer
•	 Event monitoring

Let's discuss the previously mentioned capabilities in detail.

Customizable performance summaries
With customizable performance summaries one can analyze and correlate
performance data more efficiently. This goal can be obtained by specifying time
range from where to display data. You can select a time range to watch and
analyze trends in your WebLogic Domain.

You can choose charts to be displayed, arrange order of charts, and display data
from multiple components in single chart. For a performance trend analysis, you can
use the option of saving a baseline of current performance data to be compared with
future data possible.

Out-of-box metrics
Default Enterprise Manager has some out-of-the-box performance metrics for each
Middleware target. Metrics which tell you the information about WebLogic domains,
clusters, applications, Web Services, and many more. All the data about all these
different components end up being stored in the database Management Repository.

Chapter 5

[89]

Some examples that Enterprise Manager can automatically monitor are:

•	 CPU and memory of WebLogic Server, including detailed monitoring of
individual JVMs

•	 Response times of Java applications by pinning into Enterprise Java beans
and Servlets

•	 Oracle HTTP Server statistics like error rates, connection times and durations,
and response times

•	 A list of top ten servlets based on the number of requests that have been
fired to these servlets, about how long and what average time they process
their requests

Metric Extensions
With Metric Extensions you can create metrics on any target type and customize
these metric thresholds and collections. Metric Extensions can create metrics for
a lot of target types.

Integration and Management with Enterprise Manager 12c Cloud Control

[90]

Composite Application dashboard
The Composite Application dashboard gives full visibility into both service-level
metrics as well as critical component-level metrics across any composite application.
As composite applications consist of both Java EE and SOA components and perhaps
other key middleware technologies such as Oracle Coherence and/or Oracle Service
Bus, it is critical to provide a single dashboard view across the application with key
indicators of the application health as well as some quick diagnostics to identify
problems in an early stage.

Service tests can be set up to facilitate proactive monitoring of the composite
application with service levels tracking the health of those service tests. JVM,
WebLogic Server, Application Deployments, and Host metrics are available together
with an incident console tracking all of the alerts or policy violations that might
occur on those tiers.

Finally, the dashboard can be customized however you see fit to include any metrics
and as many monitoring or diagnostics regions that are required, with specialized
regions that can be added to the dashboard for many monitored target types.

Request Monitoring
Request Monitoring gives an end-to-end visibility into requests and helps localize
end-user performance problems based on the application deployment model. In a
way, you can visualize how servers interact with each other to deliver business end-
user services requests. There is a possibility to trace end-user requests from the client
to endpoint across all the servers and applications associated with each transaction.

Chapter 5

[91]

Only synchronous transactions can be monitored that are running on
WebLogic servers.

Some features of Request Monitoring are:

•	 You can do a transaction capture and trace calls of these transactions
•	 You can diagnose requests performing badly by detecting problematic

servers with bad service time
•	 Faster fault discovery, and you can specify a level of request and response

time to which your components should comply to
•	 You can use the JVM Diagnostic feature to do diagnostics about performance

and so identify fault reasons

The following screenshot shows you the Request Monitoring summary page:

JVM Diagnostics
JVM Diagnostics in Enterprise Manager 12c can be used as a JVM diagnosis tool
which has minimal impact on the JVM. You have real-time and historical monitoring
and diagnostics always on. It occurs very often that Java applications often have
availability and performance problems. A lot of time is spent diagnosing the
root cause of these problems. Many times, the problems occurring in production
environments either cannot be reproduced or may take too long to reproduce in
other environments. Oracle Enterprise Manager Cloud Control 12c's JVM Diagnostics
enables administrators to diagnose performance problems in applications in a
production environment. You do not have to reproduce problems, which improves
application availability and performance.

Integration and Management with Enterprise Manager 12c Cloud Control

[92]

Using JVM Diagnostics, administrators will detect in a quick way the root cause
of performance problems without replaying them in the test or development
environment. It does not require complex instrumentation or restarting of the
application to get in-depth application details. It is even possible to drill down from
Java problems to database issues that are causing application downtime without any
detailed application knowledge.

You don't need any application instrumentation or any server restarts. It gives you a
complete visibility into the JVM stack heap and threads. You can analyze the impact
bi-directionally: JVM to a database or vice versa.

JVM Diagnostics can be deployed on any JVM (that is, Sun, JRockit, and IBM).

You can monitor a specific JVM in a pool, view historical and real-time data, and so
on. You can do a lot of diagnosis by accessing the JVM home page and:

•	 View JVM Performance Diagnostics
•	 View JVM Performance Summary
•	 View the Live Thread Analysis Page
•	 View the Live Heap Analysis Page
•	 Manage Thread Snapshots
•	 Manage Heap Snapshots
•	 Setup JVM Properties

Chapter 5

[93]

The following screenshot shows a typical JVM home page:

Middleware Diagnostics Advisor
The Middleware Diagnostics Advisor analyzes the entire WebLogic stack and
shows diagnostic findings and tries to get behind the root cause of a problem. It
correlates and analyzes the input and offers advice on how to resolve the problem.
For example, it can help you identify that slow SQL statements or a JDBC connection
pool are causing a performance bottleneck.

You can view the diagnostic findings for one or more servers in a WebLogic Domain
if the Middleware Diagnostics Advisor has been enabled.

You can create a diagnostic snapshot which provides a collection of both JVM and
WebLogic Server diagnostics and log data that can be exported or imported into
other Cloud Control systems for analysis at some other point in time.

Integration and Management with Enterprise Manager 12c Cloud Control

[94]

The following screenshot shows SQL execution diagnostic finding with detailed
analysis of slow SQL in your application with links to further analyze and tune
the SQL:

Diagnostic Snapshots
When a WebLogic system reaches a critical state, the first thing is to solve the
problem(s) that occur, but you probably would like to quickly capture diagnostics
in a production environment in order to later analyze in the future.

This feature within Oracle Enterprise Manager gives you the ability to take a
snapshot that will correlate both the JVM state (threads, garbage collection, RAM,
CPU) and the overall WebLogic logs across one or more servers. They can also be
exported to either another Oracle Enterprise Manager Cloud Control or directly
to Oracle support. This ensures that the diagnostics snapshot is later available for
analysis in order to find the root cause and create a permanent fix to the problem.

Chapter 5

[95]

The following screenshot is an example of the Diagnostics Snapshots Page of a JVM:

Monitoring for deployed applications
Enterprise Manager can integrate application instrumentation in the Enterprise
Manager Event monitoring infrastructure. In an application, a developer can build
some sort of JMX or Web Service operation, so for this you can build your own
management plugin using command-line tools.

You can add performance metrics for JMX-instrumented applications deployed on
Oracle WebLogic Server. To add, use a command-line tool emjmxcli to automate the
generation of the target metadata and collection files. All JMX-enabled applications
deployed to the WebLogic Server can be consolidated and monitored.

With emjmxcli you are able to monitor JMX Applications deployed on WebLogic
Server. Monitoring JMX-instrumented applications with Enterprise Manager
entails defining a new target type that Enterprise Manager can monitor via
Management Plugins.

Integration and Management with Enterprise Manager 12c Cloud Control

[96]

The JMX command-line tool (emjmxcli) simplifies creating the requisite target
definition files—metadata and the default collection file.

The tool is an offline configuration utility that connects you to MBeanServer and
enables you to browse available MBeans.

To start the JMX command-line tool:

1. Go to the $AGENT_HOME/bin directory.
2. Run any of the following commands:

emjmxcli -t WebLogic [OPTIONS]

emjmxcli -t JVM [OPTIONS]

Once invoked, the command-line interface automatically prompts you for the
requisite information

Application components dependency and
performance
Java EE metadata can be complex and abstract and this complexity keeps growing
with the introduction of new frameworks. The difficulties lie between the various
application components such as Servlets, JSPs, ADF, EJBs, and the corresponding
code. A Middleware Administrator should understand the metadata defining
those relationships.

With Oracle Enterprise Manager 12c, administrators can view dependencies and
relationships between high-level components such as JSPs, Servlets, Portlets, and
Web Services and the underlying Java EE components that support those services
such as EJBs and JDBC calls.

The following screenshot shows invocation count for a servlet and its underlying
components giving an idea of the flow of context for that URI. Also, administrators
can check how much time is spent in each of the components via the delay analysis
metrics provided in the associated pie chart and table. Administrators can then drill
down deeper into each class or component to find out how it behaves based on the
context from which it was originally called. This is particularly useful considering
that many components in Java EE applications are considered shared components
where context is critical.

Chapter 5

[97]

Log Viewer
With the Log Viewer, you can gain access to log files regardless of where they reside.
You can access WebLogic and Fusion Middleware log files from a single console,
search and correlate messages across log files based on time, severity, or Execution
Context ID (ECID).

Also, it is possible to download log files or export messages to a text, XML, or
CSV format.

If you like to control WebLogic Server Log Files, it is possible to use Oracle
Management Service, a Java EE application deployed on an Oracle WebLogic Server.

You will find the log file information of the WebLogic Server components at:

<EM_INSTANCE_BASE>/user_projects/domains/<domain_name>/servers/<SERVER_
NAME>/logs/<SERVER_NAME>.log

You can specify rotation by size or time, as well as the number of files to keep before
it will be deleted. The default settings are:

•	 In production mode, rotation up to 5 MB
•	 Level of log messages is set to WARNING
•	 The maximum number of files is 10

Integration and Management with Enterprise Manager 12c Cloud Control

[98]

Event monitoring
With event monitoring, one can be proactive about availability and performance
problems 24 x 7. You can specify critical versus warning thresholds for metrics.

There are various notification methods such as e-mail/page, SNMP trap, or
OS command. Also, notification rules and schedules can be created for when
to receive alerts.

Business Transaction Management
End users definitely like to know how their business transactions are doing, so
Enterprise Manager provides Business Transaction Management. These end-to-end
transactions are then monitored in real time and you can extract business KPIs from
the payload. Transactions can be searched for and aggregated to better trace, track,
and troubleshoot problems. They can be discovered because the transaction contains
some sort of tracking algorithm.

This BTM feature is available for Java EE applications and web applications and
provides the following information:

•	 Exception Management: When an exception or error occurs in any
transaction, it will locate exceptions and errors in transactions across
multiple application components.

•	 Transaction discovery: Transaction flows can be discovered, recorded, and
correlated about applications across multiple WebLogic Server Instances.

•	 Transaction Level Agreement: You specify your transactions to meet a
certain kind of level agreement. With this feature you can easily detect
if a transaction does not meet this level.

•	 Contextual visibility: You can entirely drill down your Java application
to see the contextual visibility and relate them metric, to understand and
analyze potential application bottlenecks and performance trends. A result
of these analysis is you can issue capacity changes and perform overall
application management.

Chapter 5

[99]

Heap Analysis
Your Java Virtual Machines, in which your applications are running their code,
should be monitored if it does not contain memory leaks. To find these memory
leaks, you can use Enterprise Manager 12c to take and analyze snapshots of the JVM
heap. You can do a live Heap Analysis or perform a snapshot to analyze the garbage
collector of the JVM. You can also compare a snapshot with earlier taken snapshots,
and isolate object that consume a lot of memory.

Integrated Cloud Stack Management
To service the entire Oracle Cloud Stack, Enterprise Manager 12c provides
manageability through your entire Cloud environment. All manageable capabilities
are represented to manage Exalogic and Exadata, and Sun Hardware through Oracle
Ops Center 12c. Oracle Ops Center is a tool to control and administer your hardware
such as CPU, RAM, Network Interfaces, and Storage.

You can do full performance monitoring for E-business Suite, Siebel, PeopleSoft,
JD Edwards, and Fusion Applications. Also, you can perform user experience
management, change and configuration management, patching, provisioning,
testing, performance management, integrated diagnostics, and automatic tuning.

Quality management has a complete test suite for functional and load testing for
testing web applications, doing a replay of a test scenario and real live testing, and
simulating production scenarios.

So in general, Integrated Cloud Stack Management makes it easier for administrators
to control their environment with the help of these tools.

Summary
In this chapter, we tried to provide you a brief overview about how Oracle
WebLogic Server 12c is integrated into Oracle Enterprise Manager 12c. A WebLogic
administrator can extend the capabilities of the WebLogic Server environments that
are controlled by the Enterprise Manager.

In the next chapter, we will focus more on the cloud with WebLogic as key
application server in Oracle's engineered systems.

Oracle WebLogic 12c to the
Cloud: Exalogic

Oracle WebLogic Server 12c is the latest release of the application server for
conventional systems, engineered systems, and cloud environments. As the center
piece of Oracle's Cloud Application Foundation and a core part of the Oracle Fusion
Middleware product family, Oracle WebLogic Server continues to deliver innovative
new capabilities for building, deploying, and running Java Platform Enterprise
Edition (Java EE) applications.

Oracle WebLogic Server 12c is focused on developer-centric and cloud-centric
issues through enhancements and advanced technology integrations that include
its distributed data grid as well as deployment and management improvements.
WebLogic 12c server is the beginning of a next-generation foundational middleware
platform that automates and eases deployment and management functionality.

WebLogic Server is still a work in progress (for example, 12c needs to be integrated
with Oracle Fusion Middleware). However, this kind of support for standards-based
development and integration with its engineered systems will help drive interest in
its private cloud platform, Exalogic, and be ready for middleware, applications, and
database technologies to be supported in its private cloud offering.

Let's see Oracle WebLogic 12c's position in Oracle's engineered system.

Oracle WebLogic 12c to the Cloud: Exalogic

[102]

What is Oracle Exalogic?
Exalogic is a computer appliance made by Oracle, or better called an engineered
system where software and hardware have been put into one big box. First of all,
let's have a look at the hardware: Oracle Exalogic is a rack of up to 30 compute nodes
mounted in a rack with Infiniband backplane and ZFS storage (ZFS is a combined
file system and logical volume manager designed by Sun), where each compute node
has two Intel Xeon x86 CPUs with six cores each. This means that a full rack has a
total of 360 cores. All of these individual servers are interconnected with each other
via Infiniband networking with the ability to connect together up to eight racks of
Exalogic or Exadata on one Infiniband network. Each of these 30 servers has 96 GB
of RAM and 64 GB of Solid State Disks. Additionally, the rack has 60 TB of SAS disk
storage to be shared between those 30 servers All this sounds fairly impressive on
paper, however unlike traditional hardware, customers don't have the flexibility
to select the components they need in this hardware configuration, except to buy
a quarter of the rack, a half rack, or a full rack.

Inside an Exalogic Machine you will find:

•	 Integrated Storage: Each Exalogic hardware configuration includes an
Infiniband-attached ZFS storage cluster usable for application binaries, log
files, or any other application requiring high performance, highly available
disk storage. The storage is shared for applications, and clustered. It consists
of 40 TB disks with 4 TB read cache and 72 GB write cache.

•	 Infiniband I/O Fabric and 10 GbE: Infiniband is a high speed connection bus
for internal and external connections in Oracle's engineered systems such as
Exadata and Exalogic. All software components within Oracle Exalogic are
optimized to use this high-speed Inifinband bus, which can perform up to a
speed of 40 GB/s in theory, of course. Connections between an Exalogic and
Exadata can go over this Infiniband bus, but its limit is when it goes outside
the box, because there is no Infiniband interface available. However, this can
be emulated using Ethernet over Infiniband (EoIB) which can perform up
to 10 GB/s. As you can see at the specifications, Inifiniband performs much
faster than the traditional hardware used in conventional systems.
The WebLogic Exalogic optimization was introduced from version 10.3.4,
which you could enable in the WebLogic Admin Console.

Chapter 6

[103]

The following screenshot shows you where to enable this optimization:

This Exalogic Optimization is represented by Exalogic Optimizations
Enabled MBean, The optimization is needed because it will have to process
the immense performance boost an Exalogic system delivers. Also, WebLogic
thread management and request processing are brought up to speed to serve
the Java applications, which are running in this high-speed environment. To
enable this in the console, go to the Domain Structure pane and click on the
domain name.

•	 Compute Nodes: The Compute nodes in the Exalogic system can be up to
(30x) Intel Xeon x86 compute nodes with redundant Infiniband connectivity,
power and solid state disks. Its CPUs can be up to 360 Xeon cores (2.93 GHz),
12 cores per server, 8/16/30 server configurations (per rack). Memory in a
full rack is 2.8 TB DRAM, 960 GB SSD.

Oracle WebLogic 12c to the Cloud: Exalogic

[104]

Exabus
The technique that connects all system components with each other is called Exabus.
It is an I/O-based communication fabric to provide the basis for Exalogic's reliability,
scalability, and performance.

It has the function of extending and connecting the PCI e-based system bus used
within each of the major system components. Exabus is based on Quad Data Rate
(QDR) Infiniband. QDR is a technique that takes advantage of the multicore CPU
architecture which enhances CPU speed and consists of hardware, software,
and firmware distributed throughout the system and involving every major
system component.

The Infiniband specification was developed by Compaq, IBM, and Hewlett-Packard,
with Next Generation I/O developed by Intel, Microsoft, and Sun Microsystems.
This technique has been used by Oracle for its own engineered system, which is
in fact a high performance computing system. It provides the greatest available
bandwidth per physical port (40 GB/s—in theory) and lowest latency (~1.07μsec).

Since the traditional IPv4 has limitations, IPv6 is supported to be able to expand
your devices.

Other protocols supported are IP (IPoIB) and Ethernet (EoIB). In this case, already
existing applications do not need to be modified but can use the benefits of this new
interface performance.

Infiniband communicates directly to applications, and can isolate these applications
using channels for efficient communication.

Oracle Exalogic Cloud Software components
The Oracle Exalogic Cloud Software components are used to increase the
performance of deployed applications. Exalogic can improve performance of SOA
or other message-distributed applications that make extensive use of enterprise
messaging. It can handle large volumes of HTTP requests. Applications that have
large memory requirements or that are highly multithreaded are no problem for
Exalogic. It can also execute large volumes of transactional interactions with Oracle
11g Database and/or RAC instances, by executing a lot of actions in memory.

Chapter 6

[105]

The following diagram shows how various main components and WebLogic 12c are
integrated in the Exalogic stack:

E
n
te

rp
ri
s
e

M
a
n
a
g
e
r

O
ra

c
le

V
ir
tu

a
l
A
s
s
e
m

b
ly

B
u
ild

e
r

Middleware and Business Applications

WebLogic

Exabus SDP API

Coherance

Exabus JAVA API

Tuxedo

Exabus RDMA API

Exalogic Cloud Software

Exabus

Oracle VM

Exalogic Control

Exalogic Elastic Cloud X2-2 Hardware

Exalogic Cloud Software
Exabus uses low-level drivers which operate directly on kernel level, Remote Direct
Memory Access (RDMA) which loads directly into memory instead of acting
directly on OS level. Kernel-level Java Virtual Machines are optimized using memory
buffers which leads to fewer garbage collects, and this of course, leads to higher
performance, because garbage collection can be an intensive action to perform.
Having more memory available, the need of doing frequent garbage collects
disappears and can be done at an appropriate time so the application does not
notice anything of these actions.

The Exalogic Software consists of three APIs:

•	 RDMA API is the API being used to accelerate Tuxedo and make use of all
benefits of all the extreme performing hardware

•	 The Message bus API is meant for accelerating Coherence
•	 Sockets Direct Protocol (SDP) API is meant to accelerate WebLogic

Oracle WebLogic 12c to the Cloud: Exalogic

[106]

In the following diagram, you can see the position of the Exabus stack and, in
particular, Tuxedo:

Coherance

Exabus Java APIs Tuxedo

WebLogic

Exabus RDMA
(C++ API)

Messagebus Exalogic SDP

RDMA API: Oracle Tuxedo
Oracle Tuxedo is an open system transaction processor (TP). It supports both
COBOL and C/C++ applications, as well as Ruby and Python.

Tuxedo is a transaction processing system or transaction-oriented middleware,
comparable to IBM's MQ and designed for high availability and to provide scalable
applications. It can perform a lot of transactions per second on commonly available
distributed systems. Originally, it was developed and designed by AT&T telephone
company to act as an online transaction processing (OLTP) system.

Tuxedo uses the technique of message routing and queuing these messages into
its system. Message requests are sent to Tuxedo named services and then it uses
memory-based communication to queue the requests to Tuxedo servers. The
requester is unaware of where the server that actually processes the request is
located or how it is implemented, so this is an asynchronous request. This is, in fact,
the principle of how SOA is implemented in nowaday's modern systems before even
the concept of SOA was familiar to any one.

In 2008, Oracle acquired BEA and for a long time it seemed undetermined what
Oracle would do with this Tuxedo systems. Although a quite unknown software
product, large bank messaging systems such as the International Bank Transfers
Systems (SWIFT) uses Tuxedo for message processing

Oracle Tuxedo 12c will be part of the new Exabus stack, a component embedded in
the Exalogic solution Oracle launched earlier.

Chapter 6

[107]

Tuxedo's migration abilities such as workbench tools for the migration process
are integrated in Eclipse, so developers can migrate mainframe CICS resources
and COBOL copybooks to the Oracle platform. In general, you can say that
Tuxedo in Exalogic is meant to migrate non-Java applications (especially
Mainframe applications).

Tuxedo in the Oracle version
The structure of Tuxedo consists of the following components:

•	 Communication concentrators: For remote clients (Java, CORBA, or
Web Services).

•	 Gateways: To facilitate the sharing of services across domains, Tuxedo
provides domain gateways.

•	 Failure recovery: Each machine monitors the state of all servers and can
automatically restart failed servers.

•	 Transaction monitoring and coordination: Tuxedo applications can make
use of the transactions (to databases or other subsystems) to be controlled by
the application or automatically controlled by the Tuxedo configuration, that
is, container controlled transactions.

•	 Queuing subsystem: Tuxedo uses a queuing subsystem called /Q. This
facility provides transient and persistent queues. You can compare these
with other messaging queuing products like JMS or MQ.

Oracle Tuxedo's new or enhanced features
•	 Mainframe re-hosting: To migrate the C/C++ and COBOL applications.
•	 SALT: For web services, SOAP/HTTP(S) gateway and for developing SCA

based applications in C++, Python, PHP, and Ruby. Supports modules for
Apache Web Server, Oracle HTTP Server, and Oracle iPlanet Web Server.

•	 Tuxedo Mainframe Adapters (TMA): This provides a set of processes that
run on Tuxedo that communicate with a mainframe.

•	 JCA Adapter: This is a wrapper to WebLogic Tuxedo Connector (WTC) as
part of WebLogic Server. WTC can only be used on WebLogic, but the JCA
adapter allows deploying WTC capabilities on other Java Apps Servers that
support JAVA EE JCA.

Oracle WebLogic 12c to the Cloud: Exalogic

[108]

Message Bus API: Oracle Coherence
Oracle Coherence is a product that can be used for application clustering and reliable
data sharing, caching state in the Application tier and relieve load on lower-tier
systems such as databases, mainframes, Web Servers, or Web Services.

Coherence is used for a so called Data Grid. A Data Grid is a system composed of
multiple servers that work together to manage information and related operation.

Coherence can be used for the following cases:

•	 Caching: Applications request data from the Data Grid rather than backend
data sources

•	 Analytics: Applications ask the Data Grid questions from simple queries in
advanced scenario modeling

•	 Transactions: Data Grid acts as a transactional System of Record, hosting
data and business logic

•	 Events: Automated processing based on events

Integration with Coherence can be achieved by Custom integration through the
Coherence API or through existing Switch-On out-of-the-box integrations such as:

•	 TopLink Grid in combination with JPA object-relational data. This simplifies
Coherence use in shared database environment and propagates DB updates
to Coherence. GoldenGate captures the changes to database tables and
TopLink maps database changes to cached.

•	 WebLogic Server: In-memory HTTP session on Grid.
•	 Service Bus: Service Result Caching. Result caching is controlled at business

services level and allows for fine-grained control for composite services. It
caches the same set of services being called many times so it doesn't have to
go over the line again, which gives better performance. A subset of results
will make up final results of a cached service.

Coherence in Exalogic uses direct memory access and bypasses the kernel to improve
speed and performance. The newest version of Coherence (3.7.*) has ActiveCache
integration with WebLogic Server. It has Coherence cluster MBeans within WebLogic
Server. The Node Manager is enhanced for starting/stopping Coherence cache
servers from the Administration Console or doing it remotely.

Coherence supports Java APIs and Exalogic Elastic Cloud Software and has focused
on Exalogic with the following features:

•	 Enable low-latency computing
•	 Optimized implementation for Exalogic Infiniband

Chapter 6

[109]

•	 Scale individual nodes on multicore machines
•	 Advanced networking capabilities
•	 Messaging
•	 Direct memory access throughout RDMA
•	 Asynchronous APIs

Another feature is Coherence*Web integration and is used for HTTP session
management dedicated to managing session state in clustered environments.

Weblogic Server 1

(JVM 1)

Weblogic Server 2

(JVM 1)

WebApp 1

WebApp 2 “HelloWorld=Session.getAttribute(“name”)”

Coherance Cache Server1

Name=“HelloWorld”=Session.getAttribute(“name”,“HelloWorld”)

Name=“HelloWorld”

Coherance Cache Server

‘..n..’

Coherance Cache Server2

Name=“HelloWorld”

Oracle Coherance Cluster

(Cache Replicated Topology)

The application grid running Coherence*Web is shared between two clusters and
active HTTP session are accessible from both clusters. Rolling traffic from primary
cluster into a backup does not degrade performance.

SDP API: WebLogic
WebLogic 12c is enhanced with Exalogic features, all bundled in the SDP API.

SDP or Sockets Direct Protocol is a low-level, remote-computing protocol, originally
designed for Infiniband fabrics. It defines a standard wire protocol for streams. You
can call it an RDMA-accelerated alternative to TCP/IP. It is part of the OpenFabrics
Enterprise Distribution (OFED) and it has support in JDK 7 on Solaris and Linux.

WebLogic uses SDP for inter-process communications over the Infiniband interface.
Parallel muxers give a faster message flow because it reduces lock contention, and
larger packet sizes reduce processing messages onto the network.

Oracle WebLogic 12c to the Cloud: Exalogic

[110]

•	 Increased WebLogic scalability, throughput, and responsiveness:
Improvements to WebLogic's networking capabilities, request handling,
and thread management mechanisms, which enable it to scale better on the
high multicore compute nodes which are working on the InfiniBand fabric
that ties all the compute nodes together. Each WebLogic Server can handle
more client requests while at the same time also reducing the time taken to
respond to each individual request.

•	 Increased performance on Session Replication mechanisms: WebLogic's
session replication mechanism for Exalogic is enhanced to deal with the
broad bandwidth of InfiniBand used for parallel connections over the
network. Java web applications take great advantage of this enhancement
because the states in a cluster can be replicated with the speed of light
between the applications.

Oracle Virtual Assembly Builder
Oracle Virtual Assembly Builder is a tool that creates multitier Oracle Fusion
Middleware environments as prepackaged Oracle VM templates. These packages
are called assemblies. They contain preconfigured virtual machines and a complete
prepared environment which can be deployed on Exalogic on demand. This can be
done as many times as you wish.

Chapter 6

[111]

Virtual Assembly builder works closely together with WebLogic. You can download
it from Oracle Technet: Oracle Technology Network | Middleware | Virtual
Assembly Builder | Downloads.

In fact, you will install the WebLogic Server software, install the latest OVAB
software like 11g Release 1 (11.1.1.6) and create an OVAB Domain as you would
normally do with any WebLogic Domain. After you have started your domain,
you are ready to build and deploy any virtual appliance.

The following diagram shows the components that belong to a OVAB Architecture:

OVAB Deployer

Virtualization System

Coherence

Persisted

State

OVAB

Repository

OVAB Studio

abctl command tool

Web Service

WebLogic

Domain

Oracle Traffic Director
Oracle Traffic Director is one of the newest products that was launched in 2011, to
make the concept of an engineered system complete. Oracle Traffic Director is some
sort of software load balancer and is the actual replacement of Oracle's previous
load-balance product called Oracle WebCache.

Oracle Traffic Director will have to compete with traditional load balancers such as
Cisco's BigIP or other hardware load balancer solutions.

In fact, traditional load balancers do their work from a network point of view,
while OTD is a so called Application Routing Engine, which is completely right
as it operates on network layer 7, the application layer.

Oracle WebLogic 12c to the Cloud: Exalogic

[112]

OTD supports the latest SSL encryption. It uses 40 GB/s Infiniband connections
to support not only external traffic, but lots of internal traffic, in particular SOA
(such as service calls from and to BPEL and OSB). In a typical SOA messaging
system with extreme load with millions of messages a day, transformed and routed
by Oracle Service Bus and transferred to BPEL to be processed further, Exalogic with
its extreme network capabilities could be a solid solution for your entire Enterprise.

And finally, with Oracle Traffic Director you will get complete control of your
environment, where a Middleware Administrator becomes suddenly a Network
Administrator. It all comes together into one department, with no boundaries
between the different departments anymore, the entire Fusion Middleware stack is
tightly integrated from hardware to network.

Oracle Traffic Director is originally based on iPlanet, a mature product with a history
spanning a large number of years and almost as many names, and something Oracle
acquired as part of Sun. The engineering effort has been going into management
tooling, such as scripting.

Some facts about Oracle Traffic Director are as follows:

•	 OTD supports SSL encryption
•	 40 GB/s Infiniband connections instead of the 1 GB/s (but not to the

outside world)
•	 A virtual appliance (VA) running on Oracle VM Server
•	 SSL-offloading, caching, and redirecting
•	 Tight integration with Oracle HTTP Server and other Apache versions
•	 Reverse-proxy routing/load-balancing
•	 Request rate limiting/throttling for protecting your resources from overload
•	 Cluster management
•	 Integration of Single Sign On and Access Management
•	 Infiniband/SDP support
•	 OVM/OVAB support for building virtual assemblies

Chapter 6

[113]

The following is the screenshot of Oracle Traffic Director's homepage:

You can serve a pool of WebLogic servers by OTD, which acts just like a hardware
load-balancer. You can see in the following diagram a typical OTD architecture:

Firewall

http(s)

Virtual IP

Pool of WebLogic

servers

Failover group of OTD instances

Heartbeat

OTD_1

(active)

OTD_2

(passive)

Requests routed in a poollist

Requests distributed based on load-distribution method

Pool of WebLogic

servers

Oracle WebLogic 12c to the Cloud: Exalogic

[114]

Oracle WebLogic/Exalogic optimizations
From WebLogic Server version 10.3.4, Oracle has done a great job to optimize it for
an Exalogic environment. The most important ones are discussed here.

Increased server scalability, throughput, and
responsiveness
These improvements lie in the fact that various components, such as networking,
request handling, memory, and thread management in WebLogic as well as in
JRockit, are better scaled for the high-end Inifinband interface and the multiple
CPU core nodes. WebLogic uses socket handlers that are Java NIO-based for more
efficient request processing, multicore aware thread pools, and shared byte buffers
to reduce data copies between subsystem layers.

•	 Java NIO: The new Java NIO (New Input Output) is meant for more efficient
use of threads and greater throughput. The new I/O APIs are designed by
the JSR-203 specifications and bundled in the the java.nio.file package.

•	 Self-tuning Thread Pool: Another enhancement is a fully-optimized work
scheduler, providing improvements to the Increment Advisor, which is
used to manage the size of WebLogic Server's self-tuning Thread Pool. This
aligns the Thread Pool to take advantage of the fast CPUs inside the Exalogic
system. It can be set in the MBean KernelMBeanmbeanKernelMBean.
addWorkManagerThreadsByCpuCount.

•	 Data buffer copies: The next good modification is the reduction of the
number of data buffer copies that have been incorporated. WebLogic Server
has changed to use byte buffers to collect data responses. These buffers are
shared between the WebLogic's subsystem layers, in contrast to the old
behavior where copies of data arrays were made and then passed between
the subsystem layers.

To reduce network overhead, some sort of I/O pattern is used (Scatter/
Gather I/O—read and write in multiple memory buffers) between
WebLogic and the JVM when it sends data over the network.
These enhancements can be set by using:

	° Dweblogic.ScatteredReadsEnabled=true/false or KernelMBean.
setScatteredReadsEnabled for Scattered Reads

	° Dweblogic.GatheredWritesEnabled=true/false or KernelMBean.
setGatheredWritesEnabled for Gathered Writes

http://download.java.net/jdk7/docs/api/java/nio/file/package-summary.html

Chapter 6

[115]

Server session replication performance
WebLogic can use the In-Memory HTTP Session Replication mechanism for
maintaining application session states in a cluster. This mechanism is optimized for
the large Infiniband bandwidth between managed servers in a cluster. The session
data can be replicated in parallel to a second server, using parallel socket connections
instead of just a single connection. WebLogic also avoids a lot of unnecessary
processing that usually takes place on the server receiving session replicas, by using
lazy deserialization. With the Infiniband optimized JRockit JVM, WebLogic does not
use the TCP/IP stack, but the InfiniBand's SDP, to enable the session payloads to be
sent over the network with lower latency.

The lazy deserialization can be set by using Dweblogic.replication.
enableLazyDeserialization=true/false or ClusterMBean.
setSessionLazyDeserializationEnabled.

Better Oracle RAC and Exadata integration
From version 10.3.4, Oracle introduced some major improvements for either the
traditional Oracle RAC as Exadata database systems such as RAC active load
balancing and improved failover mechanisms(any RAC not just ExaData).

Another new technology that was introduced was called Active GridLink. This
provides optimized Oracle RAC database connectivity and intelligent load balancing
across RAC nodes to detect faster if a connection should failover when a RAC
node fails. All these new technologies delivered reduced response time in the
communication between Exalogic and Exadata . This is because communication
runs over the Infiniband's own native network protocol called SDP to interact
between the different components.

The low latency benefit for request-response times for calls between WebLogic and
the database will be reached if you use large result sets. Those are transferred from
database to WebLogic, which will also leads to faster response of applications.

If you want to use the SDP protocol, you will have to add the following code to your
startup options or enable it in the WLS Admin Console:

 -Djava.net.preferIPv4Stack=true

Oracle WebLogic 12c to the Cloud: Exalogic

[116]

Active GridLink is a new feature area for scaling WebLogic Server up to Oracle
Database RAC. Before this feature, WebLogic already was the only Java EE 5
application server on the market with declarative integration with RAC using a
feature called Multi Data Sources and these continue to be supported. However,
Active GridLink for RAC takes this integration to a new level. There are five key
features of GridLink:

•	 Single data source for an entire RAC cluster: When you have many RAC
nodes in your environment, you still need one data source. With GridLink
and ONS, you do not need to worry about using all the RAC nodes, because
these components will handle the failover and load balance mechanisms.

•	 RAC workload awareness: By monitoring the workload of a typical RAC
node, GridLink can decide to balance it across the other nodes which leads to
even better performance and protects your database from being overloaded.

•	 Transaction affinity: Global transactions have an affinity context assigned
to a specific RAC instance enabling significantly better performance.

•	 Fast Connection Failover: This works on the basis of events occurring in the
JDBC connection pool, manual or automatic events, such as if one RAC node
fails, an event is raised and it will be detected by the FCF mechanism, and
immediately the connection will switch to any other available RAC node.
Also, if a DBA shuts down an RAC node for maintenance, FCF detects it
and will switch connections.

•	 Single Client Access Name (SCAN): Besides Active GridLink and FCF,
WebLogic 12c supports a typical RAC feature called SCAN. This is
configured at the TNS level with a SCAN Listener address acting like a
client. It this case, WLS needs to be configured against just one SCAN
address instead of all the addresses of the different RAC nodes.

Reduced Exalogic to Exadata response times
The connection between an Exalogic and an Exadata system is over the superfast
Infiniband interface using the native Sockets Direct Protocol (SDP). JDBC will
interact much faster with the database on the Exadata. Along with JRockit
enhancements, a Java EE application will respond much faster to end clients,
even if it has to process large JDBC result sets.

Chapter 6

[117]

Summary
So, with this final chapter, it has been tried to give you a first look inside the new
release of Oracle WebLogic 12c. A key fact to mention is that is has been made ready
for the future cloud and to act as the key application server on Oracle's engineered
system Exalogic. One other major improvement is the Java EE 6 implementation plus
Java SE 7. In future releases, Java EE 7 will come in scope and a lot of improvements
are to be done, but with this product, I think Oracle has a strong platform in the
enterprise world.

Another point is it will be more and more integrated to one whole. At the time of
writing this book, there is, for instance, still an Administration Console plus an
Enterprise Manager Console, and two Java Virtual Machines (JRockit and HotSpot),
but in future releases Oracle will bring all these components together in one.

This is just one of the many things that are planned to happen in a future release.

I hope this book has given you a broad overview of Oracle WebLogic Server 12c;
although not all 200 new features could appear in this book, I believe the most
important ones are discussed.

Have fun trying it and try to bring your platform up to this magnificent level!

Index
Symbols
@PostConstruct method 24
@PreDestroy method 24
@Startup annotation 24

A
Active GridLink

about 115, 116
and RAC, integrating 63, 64
Fast Connection Failover feature 116
features 116
RAC workload awareness feature 116
Single Client Access Name (SCAN) 116
Single data source for an entire RAC cluster

feature 116
Transaction affinity feature 116

ADF Web GUI. See Oracle Enterprise Man-
ager Cloud Control

Administration Console 58
AffEnabled attribute 68
analytics 108
application

deploying 37
Application-Scoped Drivers 67
AppXray 43
assemblies 110

B
beans.xml file 19
bean validation 19
bind task 77
BTM 98
Business Transaction Management. See

BTM

C
caching 108
Capacity Increment Attribute 65
CAT

and Classloading 51
CDI

about 18
for Java EE (JSR 299) 19, 20

CertPathValidator security provider 73
Classloading

and CAT 51
Classloading Analysis Tool. See CAT
Classloading filtering

features 52
cloud development

with WebLogic 12c 55
Cloud Technology 36
Coherence*Web integration feature, Oracle

Coherence 109
communication concentrators 107
Composite Application dashboard,

WebLogic Server 12c 90
compute nodes 103
com.sun.faces.spi.InjectionProvider inter-

face 21
configuration features 11
ConnectionAffinityCallback interface 68
Connection Labeling 68
context-root element 35
Contexts and Dependency Injection. See

CDI

[120]

D
database management system. See DBMS
data buffer copies 114
Data Grid 108
Data Source Profile Logging 66
DBMS 7
Debug Scopes 68
deployment descriptor

for GlassFish Server 54
deprecated APIs

about 33
EJB 2.x Entity Beans CMP 33
Java EE Application Deployment (JSR-88)

33
JAXR 33
JAX-RPC 33

development environment
configuring, tips 39
using, tips 39

development features 9, 10
distributed caching 13, 14

E
EAR application classpath 51
Eclipse

and Oracle Enterprise Pack for Eclipse
(12.1.1.0) 41-43

Maven for 49
EclipseLink MOXy. See JAXB
EJB 2.x Entity Beans CMP, deprecated APIs

33
EJB 3.1 18
EJB Lite

about 25
features 25

EJBs
about 22, 23
annotation support, deployment with 26,

27
cron-style declarative and programmatic

timers 23
EJB 3.1 annotation support 26
EJB Lite 25
embeddable EJB 25
global JNDI names 24

in war, admin console support 26
simplified WAR packaging 24
singleton beans, with concurrency control

23
startup/shutdown callbacks 24, 25

embeddable EJB 25
Enterprise Java Beans. See EJB 3.1
Enterprise Manager 12c 12, 13
Enterprise Manager 12c (12.1.0.1) Grid

Control . See Oracle Enterprise
Manager 12c (12.1.0.1) Grid Control

Enterprise Manager (EM) 80
event monitoring, WebLogic Server 12c 98
events 108
Exabus 104
Exalogic. See Oracle Exalogic
Exalogic Applications 36
Exalogic Cloud Software

about 105
APIs 105

Exalogic Cloud Software, APIs
about 105
Message bus API 105
RDMA API 105
Sockets Direct Protocol (SDP) API 105

Exalogic Cloud Software components. See
Oracle Exalogic Cloud Software
components

Exalogic Elastic Cloud 55
Exalogic features 9, 14, 15, 61
Execution Context ID (ECID) 97

F
failover features 11
failure recovery 107
FAN

about 64
enabling 64

Fast Application Notification. See FAN
FastSwap option 39
Fatal Error Codes 66
features

configuration features 11
development features 9, 10
Exalogic features 9, 14, 15
failover features 11

[121]

HotSpot JVM features 9
Java EE 6 features 8, 9
performance features 11
time management features 12
tooling features 11

G
gateways 107
GlassFish Server

deployment descriptor for 54
grid computing (g) 7

H
heap analysis 99
HotSpot JVM features 9

I
IDEs

Maven for 49
Infiniband I/O Fabric and 10 GbE 102, 103
Integrated Cloud Stack Management 99
IntelliJ IDEA

features 44
International Bank Transfers Systems 106

J
JACC 19, 71
JASPIC 70
java:app 59
java:global 59
java:module 58
Java API for RESTful Web Services (JAX-RS

1.1) 18
Java API for RESTful Web Services (JSR

311) 32
Java API for XML-based RPC. See JAX-RPC
Java API for XML-based Web Services. See

JAX-WS
Java Authentication Service Provider

Interface for Containers. See JASPIC
Java Authorization Contract for Containers

1.4. See JACC
JavaBean class 20

Java Connection Architecture 1.6. See JCA
Java EE 6

goals 17
in Cloud Technology 36
WebLogic Web Services with 75

Java EE 6 API
modifications 18, 19

Java EE 6 features 8, 9
Java EE 6, specifications

about 19
admin console support for EJBs, in WAR 26
bean validation 19
Bean Validation 1.0 (JSR 303) 28
Contexts and Dependency Injection (CDI)

18
Contexts and Dependency Injection for Java

EE (JSR 299) 19, 20
deployment, with annotation support 26,

27
deprecated APIs 33
Enterprise Java Beans 3.1 22-25
Enterprise Java Beans (EJB) 3.1 18
Java API for RESTful Web Services

(JAX-RS 1.1) 18
Java API, for RESTful Web Services

(JSR 311) 32
Java Authorization Contract for Containers

1.4(JACC) 19
Java Connection Architecture 1.6 (JCA) 19
Java EE Connector Architecture 1.6 33
Java Persistence API (JPA) 2 18, 28, 30
Java Server Faces (JSF) 2 18-22
JAXB 2.2 19
Servlet 3 18
Servlet 3.0 31, 32

Java EE application Classpath 51, 52
Java EE Application Deployment (JSR-88),

deprecated APIs 33
Java IDE support 41
Java NIO 114
Java Persistence API. See JPA 2
Java Secure Socket Extension. See JSSE
Java Server Faces 2. See JSF2
javax.resource.spi.ActivationSpec interface

20
javax.security.jacc package 71

[122]

JAXB
about 77
tasks 77

JAXB 2.2 19
JAXB, tasks

bind task 77
marshal task 77
unmarshal task 77

JAXR, deprecated APIs 33
JAX-RPC 75
JAX-RPC, deprecated APIs 33
JAX-RS 76
JAX-WS 75
JCA

about 19, 33
features 33

JCA Adapter 107
JDBC 58, 59
JDBC services

about 63
Active GridLink and RAC, integrating 63,

64
JDK 7 certification 58
Jersey Java API for RESTful Web Services.

See JAX-RS
JmsDestinationAvailabilityHelper API 70
JMS services 69, 70
JMX command-line tool

starting 96
JPA 2

about 18, 28
features 28, 30

JSF 2
about 18, 21
features 21, 22

JSSE 72-74
JVM Diagnostics 91-93

L
lightweight development

with WebLogic 12c 38

M
mainframe re-hosting 107
ManagedConnectionFactory bean 20
marshal task 77

Maven
about 44
and NetBeans 50
and WebLogic 12c, integrating 44, 45
for Eclipse/OEPE 49
for several IDEs 49

Message Bus API
about 105
Oracle Coherence 108

MessageServerBean 20
metadata annotations 33
metric extensions, WebLogic Server 12c 89
Middleware Cloning Wizard

Oracle Middleware Home Gold Image,
cloning from 85

WebLogic Domain Provisioning Profile,
cloning from 85

Middleware Diagnostics Advisor 93, 94
Middleware Home

cloning, from existing installation 84
MinCapacity Attribute 65

N
Negotiate Identity Assertion provider 75
NetBeans

and Maven 50
NetBeans IDE 7.1 43
New Message-Driven Bean (MDB)

activation 70
NodeManager 58

O
OEPE

Maven for 49
OMR 80
OMS 80
online transaction processing (OLTP)

system 106
OpenFabrics Enterprise Distribution

(OFED) 109
Oracle Coherence

about 108
Coherence*Web integration feature 109
Data Grid 108
in Exalogic 108
integratiion 108

[123]

used, for analytics 108
used, for caching 108
used, for events 108
used, for transactions 108

Oracle Enterprise Manager 12c
about 79, 80
and WebLogic Server 12c, integrating 81
architectural overview 81
configuration changes, detecting 85
configuration changes, discovering 85
configuration management, features 82
system design 80
system design, features 81
WebLogic Server 12c, cloning 82-85
WebLogic Server 12c, provisioning 82-85

Oracle Enterprise Manager 12c (12.1.0.1)
Grid Control 80

Oracle Enterprise Manager Cloud Control
80

Oracle Enterprise Manager (OEM) 80
Oracle Enterprise Pack for Eclipse (12.1.1.0)

and Eclipse 41-43
Oracle Exalogic

about 102
components 102
Exabus 104
Exalogic Cloud Software 105
Exalogic Cloud Software, APIs 105
Oracle Coherence 108, 109
Oracle Exalogic Cloud Software, compo-

nents 104
Oracle Traffic Director 111, 112
Oracle Tuxedo 106, 107
Oracle Virtual Assembly Builder 110, 111
Oracle WebLogic/Exalogic optimizations

114
WebLogic 109

Oracle Exalogic Cloud Software compo-
nents 104

Oracle Exalogic, components
compute nodes 103
Infiniband I/O Fabric and 10 GbE 102, 103
integrated storage 102

Oracle Exalogic optimizations. See Oracle
WebLogic, optimizations

Oracle Management Repository. See OMR

Oracle Notification Service (ONS) 63
Oracle RAC 115
Oracle Traffic Director

about 111, 112
facts 112
homepage, screenshot 113

Oracle Tuxedo
about 106
in Oracle version 107

Oracle Tuxedo, in Oracle version
communication concentrators 107
failure recovery 107
gateways 107
JCA Adapter 107
mainframe re-hosting 107
queuing subsystem 107
SALT 107
transaction monitoring and coordination

107
Tuxedo Mainframe Adapters (TMA) 107

oracle.ucp.ConnectionLabelingCallback
interface 68

oracle.ucp.jdbc.LabelableConnection inter-
face 68

Oracle Virtual Assembly Builder
about 110, 111
components 111

Oracle WebCache 111
Oracle WebLogic, optimizations

about 114
data buffer copies 114
Exalogic to Exadata response times, re-

duced 116
Java NIO 114
Oracle RAC and Exadata integration, im-

proved 115, 116
responsiveness, increased 114
self-tuning thread pool 114
server scalability, increased 114
server session replication performance 115
throughput, increased 114

Oracle WebLogic Server 12c
about 101
cloning 82-85
provisioning 82-85

[124]

OTD. See Oracle Traffic Director
OVAB. See Oracle Virtual Assembly

Builder

P
Partitioned Distributed Topics 69
performance features 11
POM 45-47
project object model. See POM

Q
Quad Data Rate (QDR) 104

R
RAC

about 7
and Active GridLink, integrating 63, 64

RDMA 105
RDMA API

about 105
Oracle Tuxedo 106

Real Application Cluster. See RAC
Remote Direct Memory Access. See RDMA
request monitoring, WebLogic Server 12c

90, 91
ResourceAdapter bean 20
Resource Adapter security 59
RSA JSSE Provider 72
Runtime Connection Load-Balancing

(RCLB) 68

S
SALT 107
SCA applications

building, in WebLogic 42
SDP 109
SDP API

about 105
WebLogic 109

security services 70
self-tuning thread pool 114
servlet 3 18
servlets 3.0 31, 32
Session Affinity Policy 68

shared library 34
Simple and Protected Negotiate. See

SPNEGO
Single Client Access Name (SCAN) 116
Sockets Direct Protocol. See SDP
SPNEGO 74
SSL 59, 73, 74
SSL Implementation 72
SSLMBean 73
SSO

with Microsoft Clients 74
standalone clients 60
start() method 21
startup/shutdown callbacks 24, 25
SWIFT. See International Bank Transfers

Systems

T
Thin T3 Client 60
time management features 12
TLog store 62
tooling features 11
Traffic Director. See Oracle Traffic Director
transaction monitoring and coordination

107
transactions 108
Tuxedo. See Oracle Tuxedo
Tuxedo Mainframe Adapters (TMA) 107

U
unmarshal task 77
unrestricted Client ID policy 70

V
validate() method 21
Virtual Assembly Builder. See Oracle

Virtual Assembly Builder

W
WAR application classpath 51
WebCache. See Oracle WebCache
WebLogic 109
WebLogic 12c

about 34, 35, 55

[125]

and Jersey JAX-RS RI Version 1.9 76
and Maven, integrating 44, 45
cloud development with 55
development environment, tips 39
development, features 9, 10
distributed caching 13, 14
Enterprise Manager 12c 12, 13
Exalogic, features 14, 15
failover 11
features 8, 9
Java EE 6, features 8, 9
lightweight development 38
modules 34, 35
new configuration features 58
performance 11
shared libraries 34, 35
TLog store, new feature 62
traffic management 12
upgrading to 57
WebLogic Server installers 56, 57
Web Services 60

WebLogic 12c, configuration features
administration console 58
Java Authentication SPI for containers

(JASPIC) support 59
JDBC 58
JDK 7 certification 58
NodeManager 58
resource adapter security 59
security 59
SSL 59
standalone clients 60
weblogic.management.username and

weblogic.management.password 60
WebLogic 12c, JDBC

features 65-69
weblogic.appc class 26
WebLogic Comparison Template 86
WebLogic Domain

cloning 82
cloning, from existing installation 83

weblogic.jdbc.rac.DebugJDBCONS 69
weblogic.jdbc.rac.DebugJDBCRAC 69
weblogic.jdbc.rac.DebugJDBCREPLAY 68
weblogic.jdbc.rac.DebugJDBCUCP 68
weblogic.jdbc.transaction.DebugJTAJDBC

68

WebLogic Maven plugin
features 48

weblogic.security.jacc 71
WebLogic Server 101
WebLogic Server 12c

application components, dependency 96
application components, performance 96
Composite Application dashboard 90
deployed applications, monitoring 95, 96
diagnostics 86-88
diagnostic, snapshots 94
event, monitoring 98
JVM Diagnostics 91-93
log viewer 97
metric extensions 89
Middleware Diagnostics Advisor 93, 94
monitoring 86
out-of-box metrics 88, 89
performance, monitoring 86-88
performance summaries, customizable 88
request monitoring 90, 91

WebLogic Server components 38
WebLogic Server Management Pack

Enterprise Edition 81
WebLogic server tooling

using 40
WebLogic the Managent Service. See OMS
Web Services

about 75
in 12c 76
WebLogic Web Services, with Java EE 6 75

Weighted Distributed Destinations 69
wls1211_dev_supplemental.zip 57
wls1211_dev.zip 57
wls1211_generic.jar 57
wls1211_linux32.bin 57
wls1211_solaris32.bin 57
wls1211_win32.exe 57
WLS-CAT tool 52, 53, 54
wlx option 40

Z
ZFS 102
ZIP installer

downloading 39

Thank you for buying
Oracle WebLogic Server 12c: First Look

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Getting Started with Oracle Data
Integrator 11g: A Hands-On
Tutorial
ISBN: 978-1-84968-068-4 Paperback: 384 pages

Combine high volume data movement, complex
transformations and real-time data integration with
the robust capabilities of ODI in this practical guide

1. Discover the comprehensive and sophisticated
orchestration of data integration tasks made
possible with ODI, including monitoring and
error-management

2. Get to grips with the product architecture
and building data integration processes with
technologies including Oracle, Microsoft SQL
Server and XML files

3. A comprehensive tutorial packed with tips,
images and best practices

Oracle Essbase 11 Development
Cookbook
ISBN: 978-1-84968-326-5 Paperback: 400 pages

Over 90 advanced development recipes to build and
take your Oracle Essbase Applications further

1. This book and e-book will provide you with the
tools needed to successfully build and deploy
your Essbase application.

2. Includes the major components that need to
be considered when designing an Essbase
application.

3. This book can be used to build calculations,
design process automation, add security,
integrate data, and report off an Essbase cube.

Please check www.PacktPub.com for information on our titles

Oracle Application Integration
Architecture (AIA) Foundation
Pack 11gR1: Essentials
ISBN: 978-1-84968-480-4 Paperback: 274 pages

Develop and Deploy your Enterprise Integration
Solutions using Oracle AIA

1. Full of illustrations, diagrams, and tips with
clear step-by-step instructions and real time
examples to develop full-fledged integration
processes.

2. Each chapter drives the reader right from
architecture to implementation.

3. Understand the important concept of Enterprise
Business Objects that play a crucial role in AIA
installation and models.

Oracle E-Business Suite
Financials R12: A Functionality
Guide
ISBN: 978-1-84968-062-2 Paperback: 336 pages

Know what Oracle E-Business Suite can do before
you implement it

1. Take a deep dive into the key elements of
Oracle EBS financial transaction processing

2. Understand the functionality and critical
configuration steps

3. Master Oracle EBS product highlights and their
effective usage

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Ready for the cloud!
	The c is replacing the g
	WebLogic 12c supports over more than 200 new features!

	Overview and structure in the new features
	Java EE 6 support and development
	Java EE 6 features
	Development features

	Configuration and tooling
	Performance and failover
	Traffic management
	Enterprise Manager 12c
	Distributed caching

	Some more Exalogic features

	Summary

	Chapter 2: Oracle WebLogic 12c: Supporting the Java EE 6
	Java EE 6 applications for conventional and cloud deployment
	Major Java EE 6 API Changes
	Java EE 6 specifications
	Contexts and Dependency Injection for Java EE (JSR 299)
	Java Server Faces (JSF) 2
	Enterprise Java Beans 3.1
	Admin console support for EJBs in a WAR
	EJB 3.1 annotation support
	Simplified deployment with annotation support

	Bean Validation 1.0 (JSR 303)
	Java Persistence API (JPA) 2
	Servlets 3.0
	Java API for RESTful Web Services (JSR 311)
	Java EE Connector Architecture 1.6
	Deprecated APIs

	WebLogic 12c shared libraries and modules
	Java classes compatibility

	Summary

	Chapter 3: Deployment, installation, and configuration features
	Development, build compile, and deploy on WebLogic 12c
	Lightweight development with WebLogic 12c
	Some hints and tips using development on WebLogic 12c
	Using FastSwap
	Using the wlx option
	Using WebLogic server tooling
	Standard Java IDE support
	Eclipse and Oracle Enterprise Pack for Eclipse (12.1.1.0)
	NetBeans IDE 7.1
	Other expected IDEs

	WebLogic 12c and Maven integration
	The project object model (POM)
	Advanced features of WebLogic Maven plugin
	Maven support for several IDEs
	Maven for Eclipse/OEPE
	NetBeans and Maven

	Classloading and the Classloading Analysis Tool (CAT)
	Overview of Java EE application Classpath
	Built-in WLS CAT (ClassLoading Analysis Tool)

	Deployment descriptor support for GlassFish Server

	Cloud development with WebLogic 12c
	Installation and upgrades with WebLogic 12c
	Upgrading to WebLogic 12c
	New configuration features in WebLogic 12c
	JDK 7 certification
	Administration Console
	NodeManager
	JDBC
	Security
	Standalone clients
	Deprecated: weblogic.management.username and weblogic.management.password

	Web Services
	Exalogic features
	WebLogic 12c New feature TLog Store

	Summary

	Chapter 4: Integrated and External Services
	JDBC services
	Active GridLink and RAC integration
	Fan enabling
	New JDBC features for WebLogic 12c

	JMS Services
	Security services
	Java Authentication Service Provider Interface for Containers (JASPIC) support
	RSA JSSE Provider
	SSL Implementation
	Changes to SSLMBean
	JSSE/SSL
	TLS 1.2 support

	Better support for Single Sign-On with Microsoft Clients

	Web Services
	WebLogic Web Services with Java EE 6
	WebLogic 12c and Jersey JAX-RS RI
Version 1.9
	Support for EclipseLink MOXy (JAXB)

	Summary

	Chapter 5: Integration and Management with Enterprise Manager 12c Cloud Control
	What is Oracle Enterprise Manager 12c?
	Oracle Enterprise Manager 12c system design
	WebLogic Server Management: New in Enterprise Manager 12c
	Configuration management features
	WebLogic Server 12c provisioning and cloning

	Automating discovery and detecting configuration changes

	WebLogic Server 12c monitoring
	Performance monitoring and diagnostics of WebLogic Server
	Customizable performance summaries
	Out-of-box metrics
	Metric Extensions
	Composite Application dashboard
	Request Monitoring
	JVM Diagnostics
	Middleware Diagnostics Advisor
	Diagnostic Snapshots
	Monitoring for deployed applications
	Application components dependency and performance
	Log Viewer
	Event monitoring

	Business Transaction Management
	Heap Analysis
	Integrated Cloud Stack Management
	Summary

	Chapter 6: Oracle WebLogic 12c to the Cloud: Exalogic
	What is Oracle Exalogic?
	Exabus
	Oracle Exalogic Cloud Software components
	Exalogic Cloud Software
	RDMA API: Oracle Tuxedo
	Message Bus API: Oracle Coherence
	SDP API: WebLogic

	Oracle Virtual Assembly Builder
	Oracle Traffic Director
	Oracle WebLogic/Exalogic optimizations
	Increased server scalability, throughput, and responsiveness
	Better Oracle RAC and Exadata integration
	Reduced Exalogic to Exadata response times

	Summary

	Index

